Correlation Measurements of Airplane Fuselage Vibrations

The vibrations of the skin and stiffeners of an airplane fuselage have been measured in a region where the excitation is predominantly that due to the turbulent boundary layer, at Mach numbers 0.78, 0.6, and 0.45. The data have been analyzed to assess the relative importance of standing and running...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of the Acoustical Society of America 1970-07, Vol.48 (1A_Supplement), p.80-80
Hauptverfasser: Wilby, John F., Gloyna, F. L.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 80
container_issue 1A_Supplement
container_start_page 80
container_title The Journal of the Acoustical Society of America
container_volume 48
creator Wilby, John F.
Gloyna, F. L.
description The vibrations of the skin and stiffeners of an airplane fuselage have been measured in a region where the excitation is predominantly that due to the turbulent boundary layer, at Mach numbers 0.78, 0.6, and 0.45. The data have been analyzed to assess the relative importance of standing and running waves, and to determine the spatial coherence of the vibration field. In the longitudinal, or stream, direction, the broad-band correlation shows running wave characteristics, which depend on the aircraft velocity and cabin pressurization. The convection velocities are not necessarily the same as the broad-band convection velocities for the pressure field, but there is evidence of a coincidence-type condition at M=0.6. The correlation scale in the longitudinal direction is much larger than that in the circumferential direction, where there is no significant correlation between adjacent panels separated by a longitudinal stiffener. Cross power spectral density measurements have been used to determine spatial coherence and convection velocity at particular frequencies, for comparison with the broad-band data.
doi_str_mv 10.1121/1.1975302
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1121_1_1975302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1121_1_1975302</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692-419337589889c098e5a97a9595d60a29beab0cdcbc80d16de8534a871839acf43</originalsourceid><addsrcrecordid>eNotj0FLw0AUhBexYGw9-A9y9ZD63m422XcswapQ8VK8hpfNi0TSpOy2B_-90cochoGPYUape4Q1osZHXCOV1oC-UglaDZmzOr9WCQBgllNR3KjbGL_maJ2hRLlqCkEGPvXTmL4Jx3OQg4ynmE5duunDceBR0u05zsynpB99E_7YuFKLjocod_--VPvt0756yXbvz6_VZpf5gnSWIxlTWkfOkQdyYplKJku2LYA1NcIN-NY33kGLRSvOmpxdifM49l1ulurhUuvDFGOQrj6G_sDhu0aofx_Xsy6PzQ_w6EeE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Correlation Measurements of Airplane Fuselage Vibrations</title><source>AIP Acoustical Society of America</source><creator>Wilby, John F. ; Gloyna, F. L.</creator><creatorcontrib>Wilby, John F. ; Gloyna, F. L.</creatorcontrib><description>The vibrations of the skin and stiffeners of an airplane fuselage have been measured in a region where the excitation is predominantly that due to the turbulent boundary layer, at Mach numbers 0.78, 0.6, and 0.45. The data have been analyzed to assess the relative importance of standing and running waves, and to determine the spatial coherence of the vibration field. In the longitudinal, or stream, direction, the broad-band correlation shows running wave characteristics, which depend on the aircraft velocity and cabin pressurization. The convection velocities are not necessarily the same as the broad-band convection velocities for the pressure field, but there is evidence of a coincidence-type condition at M=0.6. The correlation scale in the longitudinal direction is much larger than that in the circumferential direction, where there is no significant correlation between adjacent panels separated by a longitudinal stiffener. Cross power spectral density measurements have been used to determine spatial coherence and convection velocity at particular frequencies, for comparison with the broad-band data.</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/1.1975302</identifier><language>eng</language><ispartof>The Journal of the Acoustical Society of America, 1970-07, Vol.48 (1A_Supplement), p.80-80</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>207,314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Wilby, John F.</creatorcontrib><creatorcontrib>Gloyna, F. L.</creatorcontrib><title>Correlation Measurements of Airplane Fuselage Vibrations</title><title>The Journal of the Acoustical Society of America</title><description>The vibrations of the skin and stiffeners of an airplane fuselage have been measured in a region where the excitation is predominantly that due to the turbulent boundary layer, at Mach numbers 0.78, 0.6, and 0.45. The data have been analyzed to assess the relative importance of standing and running waves, and to determine the spatial coherence of the vibration field. In the longitudinal, or stream, direction, the broad-band correlation shows running wave characteristics, which depend on the aircraft velocity and cabin pressurization. The convection velocities are not necessarily the same as the broad-band convection velocities for the pressure field, but there is evidence of a coincidence-type condition at M=0.6. The correlation scale in the longitudinal direction is much larger than that in the circumferential direction, where there is no significant correlation between adjacent panels separated by a longitudinal stiffener. Cross power spectral density measurements have been used to determine spatial coherence and convection velocity at particular frequencies, for comparison with the broad-band data.</description><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1970</creationdate><recordtype>article</recordtype><recordid>eNotj0FLw0AUhBexYGw9-A9y9ZD63m422XcswapQ8VK8hpfNi0TSpOy2B_-90cochoGPYUape4Q1osZHXCOV1oC-UglaDZmzOr9WCQBgllNR3KjbGL_maJ2hRLlqCkEGPvXTmL4Jx3OQg4ynmE5duunDceBR0u05zsynpB99E_7YuFKLjocod_--VPvt0756yXbvz6_VZpf5gnSWIxlTWkfOkQdyYplKJku2LYA1NcIN-NY33kGLRSvOmpxdifM49l1ulurhUuvDFGOQrj6G_sDhu0aofx_Xsy6PzQ_w6EeE</recordid><startdate>19700701</startdate><enddate>19700701</enddate><creator>Wilby, John F.</creator><creator>Gloyna, F. L.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19700701</creationdate><title>Correlation Measurements of Airplane Fuselage Vibrations</title><author>Wilby, John F. ; Gloyna, F. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692-419337589889c098e5a97a9595d60a29beab0cdcbc80d16de8534a871839acf43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1970</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wilby, John F.</creatorcontrib><creatorcontrib>Gloyna, F. L.</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wilby, John F.</au><au>Gloyna, F. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Correlation Measurements of Airplane Fuselage Vibrations</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><date>1970-07-01</date><risdate>1970</risdate><volume>48</volume><issue>1A_Supplement</issue><spage>80</spage><epage>80</epage><pages>80-80</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><abstract>The vibrations of the skin and stiffeners of an airplane fuselage have been measured in a region where the excitation is predominantly that due to the turbulent boundary layer, at Mach numbers 0.78, 0.6, and 0.45. The data have been analyzed to assess the relative importance of standing and running waves, and to determine the spatial coherence of the vibration field. In the longitudinal, or stream, direction, the broad-band correlation shows running wave characteristics, which depend on the aircraft velocity and cabin pressurization. The convection velocities are not necessarily the same as the broad-band convection velocities for the pressure field, but there is evidence of a coincidence-type condition at M=0.6. The correlation scale in the longitudinal direction is much larger than that in the circumferential direction, where there is no significant correlation between adjacent panels separated by a longitudinal stiffener. Cross power spectral density measurements have been used to determine spatial coherence and convection velocity at particular frequencies, for comparison with the broad-band data.</abstract><doi>10.1121/1.1975302</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0001-4966
ispartof The Journal of the Acoustical Society of America, 1970-07, Vol.48 (1A_Supplement), p.80-80
issn 0001-4966
1520-8524
language eng
recordid cdi_crossref_primary_10_1121_1_1975302
source AIP Acoustical Society of America
title Correlation Measurements of Airplane Fuselage Vibrations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T06%3A00%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Correlation%20Measurements%20of%20Airplane%20Fuselage%20Vibrations&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Wilby,%20John%20F.&rft.date=1970-07-01&rft.volume=48&rft.issue=1A_Supplement&rft.spage=80&rft.epage=80&rft.pages=80-80&rft.issn=0001-4966&rft.eissn=1520-8524&rft_id=info:doi/10.1121/1.1975302&rft_dat=%3Ccrossref%3E10_1121_1_1975302%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true