Influence of rotation on the Kelvin-Helmholtz instability

A two-layer fluid which is inviscid and which has no conduction is considered. Once rotation is included in the perturbation equations, cubic equation for the square of the wave speeds of two-dimensional waves results. Two of the roots can be closely approximated in rather simple analytic form. Thes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of the Acoustical Society of America 1974-11, Vol.56 (5), p.1371-1375
1. Verfasser: Gedzelman, Stanley D.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1375
container_issue 5
container_start_page 1371
container_title The Journal of the Acoustical Society of America
container_volume 56
creator Gedzelman, Stanley D.
description A two-layer fluid which is inviscid and which has no conduction is considered. Once rotation is included in the perturbation equations, cubic equation for the square of the wave speeds of two-dimensional waves results. Two of the roots can be closely approximated in rather simple analytic form. These roots are generally more unstable than the nonrotating waves. The root which is not degenerate as rotation approaches zero owes its greater instability under the presence of rotation to the fact that the fluid interface is tilted with respect to the gravity vector and the stabilizing role of the stratification is thereby reduced.
doi_str_mv 10.1121/1.1903452
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1121_1_1903452</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1121_1_1903452</sourcerecordid><originalsourceid>FETCH-LOGICAL-c187t-e71e8b19a538bd1c633d3a4366d5efdbed28a52d634cb71f6ca0fe65f24ba4e93</originalsourceid><addsrcrecordid>eNotj01LAzEURYMoOFYX_oPZukjNy9ckSylqiwU3uh6SyQuNpDMyiUL99VYq98LlbC4cQm6BLQE43MMSLBNS8TPSgOKMGsXlOWkYY0Cl1fqSXJXycURlhG2I3Ywxf-E4YDvFdp6qq2ka22PrDtsXzN9ppGvM-92U60-bxlKdTznVwzW5iC4XvPnfBXl_enxbren29XmzetjSAUxXKXaAxoN1ShgfYNBCBOGk0DoojMFj4MYpHrSQg-8g6sGxiFpFLr2TaMWC3J1-h3kqZcbYf85p7-ZDD6z_c-6POTmLX-_QSWk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Influence of rotation on the Kelvin-Helmholtz instability</title><source>AIP Acoustical Society of America</source><creator>Gedzelman, Stanley D.</creator><creatorcontrib>Gedzelman, Stanley D.</creatorcontrib><description>A two-layer fluid which is inviscid and which has no conduction is considered. Once rotation is included in the perturbation equations, cubic equation for the square of the wave speeds of two-dimensional waves results. Two of the roots can be closely approximated in rather simple analytic form. These roots are generally more unstable than the nonrotating waves. The root which is not degenerate as rotation approaches zero owes its greater instability under the presence of rotation to the fact that the fluid interface is tilted with respect to the gravity vector and the stabilizing role of the stratification is thereby reduced.</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/1.1903452</identifier><language>eng</language><ispartof>The Journal of the Acoustical Society of America, 1974-11, Vol.56 (5), p.1371-1375</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>207,314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gedzelman, Stanley D.</creatorcontrib><title>Influence of rotation on the Kelvin-Helmholtz instability</title><title>The Journal of the Acoustical Society of America</title><description>A two-layer fluid which is inviscid and which has no conduction is considered. Once rotation is included in the perturbation equations, cubic equation for the square of the wave speeds of two-dimensional waves results. Two of the roots can be closely approximated in rather simple analytic form. These roots are generally more unstable than the nonrotating waves. The root which is not degenerate as rotation approaches zero owes its greater instability under the presence of rotation to the fact that the fluid interface is tilted with respect to the gravity vector and the stabilizing role of the stratification is thereby reduced.</description><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1974</creationdate><recordtype>article</recordtype><recordid>eNotj01LAzEURYMoOFYX_oPZukjNy9ckSylqiwU3uh6SyQuNpDMyiUL99VYq98LlbC4cQm6BLQE43MMSLBNS8TPSgOKMGsXlOWkYY0Cl1fqSXJXycURlhG2I3Ywxf-E4YDvFdp6qq2ka22PrDtsXzN9ppGvM-92U60-bxlKdTznVwzW5iC4XvPnfBXl_enxbren29XmzetjSAUxXKXaAxoN1ShgfYNBCBOGk0DoojMFj4MYpHrSQg-8g6sGxiFpFLr2TaMWC3J1-h3kqZcbYf85p7-ZDD6z_c-6POTmLX-_QSWk</recordid><startdate>19741101</startdate><enddate>19741101</enddate><creator>Gedzelman, Stanley D.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19741101</creationdate><title>Influence of rotation on the Kelvin-Helmholtz instability</title><author>Gedzelman, Stanley D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c187t-e71e8b19a538bd1c633d3a4366d5efdbed28a52d634cb71f6ca0fe65f24ba4e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1974</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gedzelman, Stanley D.</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gedzelman, Stanley D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of rotation on the Kelvin-Helmholtz instability</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><date>1974-11-01</date><risdate>1974</risdate><volume>56</volume><issue>5</issue><spage>1371</spage><epage>1375</epage><pages>1371-1375</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><abstract>A two-layer fluid which is inviscid and which has no conduction is considered. Once rotation is included in the perturbation equations, cubic equation for the square of the wave speeds of two-dimensional waves results. Two of the roots can be closely approximated in rather simple analytic form. These roots are generally more unstable than the nonrotating waves. The root which is not degenerate as rotation approaches zero owes its greater instability under the presence of rotation to the fact that the fluid interface is tilted with respect to the gravity vector and the stabilizing role of the stratification is thereby reduced.</abstract><doi>10.1121/1.1903452</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-4966
ispartof The Journal of the Acoustical Society of America, 1974-11, Vol.56 (5), p.1371-1375
issn 0001-4966
1520-8524
language eng
recordid cdi_crossref_primary_10_1121_1_1903452
source AIP Acoustical Society of America
title Influence of rotation on the Kelvin-Helmholtz instability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T20%3A09%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20rotation%20on%20the%20Kelvin-Helmholtz%20instability&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Gedzelman,%20Stanley%20D.&rft.date=1974-11-01&rft.volume=56&rft.issue=5&rft.spage=1371&rft.epage=1375&rft.pages=1371-1375&rft.issn=0001-4966&rft.eissn=1520-8524&rft_id=info:doi/10.1121/1.1903452&rft_dat=%3Ccrossref%3E10_1121_1_1903452%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true