Influence of rotation on the Kelvin-Helmholtz instability
A two-layer fluid which is inviscid and which has no conduction is considered. Once rotation is included in the perturbation equations, cubic equation for the square of the wave speeds of two-dimensional waves results. Two of the roots can be closely approximated in rather simple analytic form. Thes...
Gespeichert in:
Veröffentlicht in: | The Journal of the Acoustical Society of America 1974-11, Vol.56 (5), p.1371-1375 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1375 |
---|---|
container_issue | 5 |
container_start_page | 1371 |
container_title | The Journal of the Acoustical Society of America |
container_volume | 56 |
creator | Gedzelman, Stanley D. |
description | A two-layer fluid which is inviscid and which has no conduction is considered. Once rotation is included in the perturbation equations, cubic equation for the square of the wave speeds of two-dimensional waves results. Two of the roots can be closely approximated in rather simple analytic form. These roots are generally more unstable than the nonrotating waves. The root which is not degenerate as rotation approaches zero owes its greater instability under the presence of rotation to the fact that the fluid interface is tilted with respect to the gravity vector and the stabilizing role of the stratification is thereby reduced. |
doi_str_mv | 10.1121/1.1903452 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1121_1_1903452</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1121_1_1903452</sourcerecordid><originalsourceid>FETCH-LOGICAL-c187t-e71e8b19a538bd1c633d3a4366d5efdbed28a52d634cb71f6ca0fe65f24ba4e93</originalsourceid><addsrcrecordid>eNotj01LAzEURYMoOFYX_oPZukjNy9ckSylqiwU3uh6SyQuNpDMyiUL99VYq98LlbC4cQm6BLQE43MMSLBNS8TPSgOKMGsXlOWkYY0Cl1fqSXJXycURlhG2I3Ywxf-E4YDvFdp6qq2ka22PrDtsXzN9ppGvM-92U60-bxlKdTznVwzW5iC4XvPnfBXl_enxbren29XmzetjSAUxXKXaAxoN1ShgfYNBCBOGk0DoojMFj4MYpHrSQg-8g6sGxiFpFLr2TaMWC3J1-h3kqZcbYf85p7-ZDD6z_c-6POTmLX-_QSWk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Influence of rotation on the Kelvin-Helmholtz instability</title><source>AIP Acoustical Society of America</source><creator>Gedzelman, Stanley D.</creator><creatorcontrib>Gedzelman, Stanley D.</creatorcontrib><description>A two-layer fluid which is inviscid and which has no conduction is considered. Once rotation is included in the perturbation equations, cubic equation for the square of the wave speeds of two-dimensional waves results. Two of the roots can be closely approximated in rather simple analytic form. These roots are generally more unstable than the nonrotating waves. The root which is not degenerate as rotation approaches zero owes its greater instability under the presence of rotation to the fact that the fluid interface is tilted with respect to the gravity vector and the stabilizing role of the stratification is thereby reduced.</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/1.1903452</identifier><language>eng</language><ispartof>The Journal of the Acoustical Society of America, 1974-11, Vol.56 (5), p.1371-1375</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>207,314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gedzelman, Stanley D.</creatorcontrib><title>Influence of rotation on the Kelvin-Helmholtz instability</title><title>The Journal of the Acoustical Society of America</title><description>A two-layer fluid which is inviscid and which has no conduction is considered. Once rotation is included in the perturbation equations, cubic equation for the square of the wave speeds of two-dimensional waves results. Two of the roots can be closely approximated in rather simple analytic form. These roots are generally more unstable than the nonrotating waves. The root which is not degenerate as rotation approaches zero owes its greater instability under the presence of rotation to the fact that the fluid interface is tilted with respect to the gravity vector and the stabilizing role of the stratification is thereby reduced.</description><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1974</creationdate><recordtype>article</recordtype><recordid>eNotj01LAzEURYMoOFYX_oPZukjNy9ckSylqiwU3uh6SyQuNpDMyiUL99VYq98LlbC4cQm6BLQE43MMSLBNS8TPSgOKMGsXlOWkYY0Cl1fqSXJXycURlhG2I3Ywxf-E4YDvFdp6qq2ka22PrDtsXzN9ppGvM-92U60-bxlKdTznVwzW5iC4XvPnfBXl_enxbren29XmzetjSAUxXKXaAxoN1ShgfYNBCBOGk0DoojMFj4MYpHrSQg-8g6sGxiFpFLr2TaMWC3J1-h3kqZcbYf85p7-ZDD6z_c-6POTmLX-_QSWk</recordid><startdate>19741101</startdate><enddate>19741101</enddate><creator>Gedzelman, Stanley D.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19741101</creationdate><title>Influence of rotation on the Kelvin-Helmholtz instability</title><author>Gedzelman, Stanley D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c187t-e71e8b19a538bd1c633d3a4366d5efdbed28a52d634cb71f6ca0fe65f24ba4e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1974</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gedzelman, Stanley D.</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gedzelman, Stanley D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of rotation on the Kelvin-Helmholtz instability</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><date>1974-11-01</date><risdate>1974</risdate><volume>56</volume><issue>5</issue><spage>1371</spage><epage>1375</epage><pages>1371-1375</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><abstract>A two-layer fluid which is inviscid and which has no conduction is considered. Once rotation is included in the perturbation equations, cubic equation for the square of the wave speeds of two-dimensional waves results. Two of the roots can be closely approximated in rather simple analytic form. These roots are generally more unstable than the nonrotating waves. The root which is not degenerate as rotation approaches zero owes its greater instability under the presence of rotation to the fact that the fluid interface is tilted with respect to the gravity vector and the stabilizing role of the stratification is thereby reduced.</abstract><doi>10.1121/1.1903452</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-4966 |
ispartof | The Journal of the Acoustical Society of America, 1974-11, Vol.56 (5), p.1371-1375 |
issn | 0001-4966 1520-8524 |
language | eng |
recordid | cdi_crossref_primary_10_1121_1_1903452 |
source | AIP Acoustical Society of America |
title | Influence of rotation on the Kelvin-Helmholtz instability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T20%3A09%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20rotation%20on%20the%20Kelvin-Helmholtz%20instability&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Gedzelman,%20Stanley%20D.&rft.date=1974-11-01&rft.volume=56&rft.issue=5&rft.spage=1371&rft.epage=1375&rft.pages=1371-1375&rft.issn=0001-4966&rft.eissn=1520-8524&rft_id=info:doi/10.1121/1.1903452&rft_dat=%3Ccrossref%3E10_1121_1_1903452%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |