Sound wave channelling in near-critical sulfur hexafluoride (SF6)

Strong density and speed of sound gradients exist in fluids near their liquid-vapor critical point under gravity. The speed of sound has an increasingly sharp minimum and acoustic waves are channelled within a layer of fluid. Geometrical acoustic calculations are presented for different isothermal f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of the Acoustical Society of America 2004-03, Vol.115 (3), p.980-985
Hauptverfasser: Schlamp, Stefan, Rösgen, Thomas
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 985
container_issue 3
container_start_page 980
container_title The Journal of the Acoustical Society of America
container_volume 115
creator Schlamp, Stefan
Rösgen, Thomas
description Strong density and speed of sound gradients exist in fluids near their liquid-vapor critical point under gravity. The speed of sound has an increasingly sharp minimum and acoustic waves are channelled within a layer of fluid. Geometrical acoustic calculations are presented for different isothermal fluid columns of sulfur hexafluoride (SF6) under gravity using a semiempirical crossover equation of state. More than 40% of the emitted acoustic energy is channelled within a 20 mm high duct at 1 mK above the critical temperature. It is shown how, by changes in temperature, frequency, and gravitational strength, the governing length scales (wavelength, radius of ray curvature, and correlation length of the critical density fluctuations) can be varied. Near-critical fluids allow table-top sound channel experiments.
doi_str_mv 10.1121/1.1648319
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1121_1_1648319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1121_1_1648319</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-746e8570bc304c892975d0ba23f6f965cf1317473980fa6c3f864d88b5099a313</originalsourceid><addsrcrecordid>eNotj8tKAzEYRoMoOFYXvkGWdpGaP7dJlqVYFQouqushk0lsJGYk6Xh5eyuVs_g4mw8OQtdAFwAMbmEBSmgO5gQ1IBklWjJxihpKKRBhlDpHF7W-HVRqbhq03I5THvCX_fTY7WzOPqWYX3HMOHtbiCtxH51NuE4pTAXv_LcNaRpLHDy-2a7V_BKdBZuqv_rfGXpZ3z2vHsjm6f5xtdwQx5TYk1Yor2VLe8epcNow08qB9pbxoIJR0gXg0IqWG02DVY4HrcSgdS-pMZYDn6H58deVsdbiQ_dR4rstPx3Q7q-9O3Bs57-2Ikmv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Sound wave channelling in near-critical sulfur hexafluoride (SF6)</title><source>AIP Journals Complete</source><source>AIP Acoustical Society of America</source><creator>Schlamp, Stefan ; Rösgen, Thomas</creator><creatorcontrib>Schlamp, Stefan ; Rösgen, Thomas</creatorcontrib><description>Strong density and speed of sound gradients exist in fluids near their liquid-vapor critical point under gravity. The speed of sound has an increasingly sharp minimum and acoustic waves are channelled within a layer of fluid. Geometrical acoustic calculations are presented for different isothermal fluid columns of sulfur hexafluoride (SF6) under gravity using a semiempirical crossover equation of state. More than 40% of the emitted acoustic energy is channelled within a 20 mm high duct at 1 mK above the critical temperature. It is shown how, by changes in temperature, frequency, and gravitational strength, the governing length scales (wavelength, radius of ray curvature, and correlation length of the critical density fluctuations) can be varied. Near-critical fluids allow table-top sound channel experiments.</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/1.1648319</identifier><language>eng</language><ispartof>The Journal of the Acoustical Society of America, 2004-03, Vol.115 (3), p.980-985</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c264t-746e8570bc304c892975d0ba23f6f965cf1317473980fa6c3f864d88b5099a313</citedby><cites>FETCH-LOGICAL-c264t-746e8570bc304c892975d0ba23f6f965cf1317473980fa6c3f864d88b5099a313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>207,208,314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Schlamp, Stefan</creatorcontrib><creatorcontrib>Rösgen, Thomas</creatorcontrib><title>Sound wave channelling in near-critical sulfur hexafluoride (SF6)</title><title>The Journal of the Acoustical Society of America</title><description>Strong density and speed of sound gradients exist in fluids near their liquid-vapor critical point under gravity. The speed of sound has an increasingly sharp minimum and acoustic waves are channelled within a layer of fluid. Geometrical acoustic calculations are presented for different isothermal fluid columns of sulfur hexafluoride (SF6) under gravity using a semiempirical crossover equation of state. More than 40% of the emitted acoustic energy is channelled within a 20 mm high duct at 1 mK above the critical temperature. It is shown how, by changes in temperature, frequency, and gravitational strength, the governing length scales (wavelength, radius of ray curvature, and correlation length of the critical density fluctuations) can be varied. Near-critical fluids allow table-top sound channel experiments.</description><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNotj8tKAzEYRoMoOFYXvkGWdpGaP7dJlqVYFQouqushk0lsJGYk6Xh5eyuVs_g4mw8OQtdAFwAMbmEBSmgO5gQ1IBklWjJxihpKKRBhlDpHF7W-HVRqbhq03I5THvCX_fTY7WzOPqWYX3HMOHtbiCtxH51NuE4pTAXv_LcNaRpLHDy-2a7V_BKdBZuqv_rfGXpZ3z2vHsjm6f5xtdwQx5TYk1Yor2VLe8epcNow08qB9pbxoIJR0gXg0IqWG02DVY4HrcSgdS-pMZYDn6H58deVsdbiQ_dR4rstPx3Q7q-9O3Bs57-2Ikmv</recordid><startdate>20040301</startdate><enddate>20040301</enddate><creator>Schlamp, Stefan</creator><creator>Rösgen, Thomas</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20040301</creationdate><title>Sound wave channelling in near-critical sulfur hexafluoride (SF6)</title><author>Schlamp, Stefan ; Rösgen, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-746e8570bc304c892975d0ba23f6f965cf1317473980fa6c3f864d88b5099a313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schlamp, Stefan</creatorcontrib><creatorcontrib>Rösgen, Thomas</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schlamp, Stefan</au><au>Rösgen, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sound wave channelling in near-critical sulfur hexafluoride (SF6)</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><date>2004-03-01</date><risdate>2004</risdate><volume>115</volume><issue>3</issue><spage>980</spage><epage>985</epage><pages>980-985</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><abstract>Strong density and speed of sound gradients exist in fluids near their liquid-vapor critical point under gravity. The speed of sound has an increasingly sharp minimum and acoustic waves are channelled within a layer of fluid. Geometrical acoustic calculations are presented for different isothermal fluid columns of sulfur hexafluoride (SF6) under gravity using a semiempirical crossover equation of state. More than 40% of the emitted acoustic energy is channelled within a 20 mm high duct at 1 mK above the critical temperature. It is shown how, by changes in temperature, frequency, and gravitational strength, the governing length scales (wavelength, radius of ray curvature, and correlation length of the critical density fluctuations) can be varied. Near-critical fluids allow table-top sound channel experiments.</abstract><doi>10.1121/1.1648319</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0001-4966
ispartof The Journal of the Acoustical Society of America, 2004-03, Vol.115 (3), p.980-985
issn 0001-4966
1520-8524
language eng
recordid cdi_crossref_primary_10_1121_1_1648319
source AIP Journals Complete; AIP Acoustical Society of America
title Sound wave channelling in near-critical sulfur hexafluoride (SF6)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A47%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sound%20wave%20channelling%20in%20near-critical%20sulfur%20hexafluoride%20(SF6)&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Schlamp,%20Stefan&rft.date=2004-03-01&rft.volume=115&rft.issue=3&rft.spage=980&rft.epage=985&rft.pages=980-985&rft.issn=0001-4966&rft.eissn=1520-8524&rft_id=info:doi/10.1121/1.1648319&rft_dat=%3Ccrossref%3E10_1121_1_1648319%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true