Protecting beyond the bone-conduction limit: Lessons learned developing and fielding a passive Hearing Protection Helmet
Traditional hearing protection devices focus on attenuating air-conducted sound and are limited by the bone conduction threshold (Berger, 1983). In extreme noise fields, such as aircraft maintainers operating near jet engines on aircraft carriers, the bone conducted pathway carries sufficient energy...
Gespeichert in:
Veröffentlicht in: | The Journal of the Acoustical Society of America 2023-10, Vol.154 (4_supplement), p.A348-A348 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | A348 |
---|---|
container_issue | 4_supplement |
container_start_page | A348 |
container_title | The Journal of the Acoustical Society of America |
container_volume | 154 |
creator | Wilbur, Jed C. Allen, Lindsay Audette, William Passow, Christian VanMalden, Jacob Arsenault, James Hamilton, Jonathan Gould, Kimberly Lei, Tiffany Farnese, John Pollock, Sienna Kline Schoder, Robert |
description | Traditional hearing protection devices focus on attenuating air-conducted sound and are limited by the bone conduction threshold (Berger, 1983). In extreme noise fields, such as aircraft maintainers operating near jet engines on aircraft carriers, the bone conducted pathway carries sufficient energy to damage the cochlea. Here, we describe the development, qualification, and field-testing of a passive Hearing Protection Helmet (HPH) designed to surpass the bone conduction limit. The HPH features a noise-isolating shell sealed to the head via a compliant edge seal. When worn with foam earplugs and tested to ANSI S12.6-2016 (Experimenter Fit), the Noise Reduction Rating (NRR) of the HPH is 38 dB and the Noise Reduction Statistic (NRSA) (ANSI S12.68) (80% to 20% of users) is 45 to 52 dB. We also describe challenges associated with user acceptance of the HPH. User feedback led to the integration of an electronic hear-through system to restore auditory situational awareness. Users also rejected wired communication-enabled ear plugs, resulting in the integration of ear cup speakers and adding challenges associated with setting the hear-through sound pressure level limits. We conclude with anecdotes from trial deployments aboard U.S. Navy Aircraft Carriers in 2020, 2022, and 2023. |
doi_str_mv | 10.1121/10.0023757 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1121_10_0023757</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1121_10_0023757</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_1121_10_00237573</originalsourceid><addsrcrecordid>eNqVj81uwjAQhC1UJFLg0ifYM1KKnRB-ekWgHDhw4B45yQZcOXbkdRG8PQ6CB-hp9O3O7GoY-xL8W4hEzINynqSrbDVgkcgSHq-zZPHBIs65iBeb5XLEPol-A2brdBOx29FZj5VX5gwl3q2pwV8QSmswrgL9hZU1oFWr_A8ckMgaAo3SGayhxitq2_VhGZKNQl0_ATpJpK4IeXD2k_ebcCtH3aKfsGEjNeH0pWM22-9O2zyunCVy2BSdU61090Lwou_W66tb-i_zAywCViY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Protecting beyond the bone-conduction limit: Lessons learned developing and fielding a passive Hearing Protection Helmet</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><source>AIP Acoustical Society of America</source><creator>Wilbur, Jed C. ; Allen, Lindsay ; Audette, William ; Passow, Christian ; VanMalden, Jacob ; Arsenault, James ; Hamilton, Jonathan ; Gould, Kimberly ; Lei, Tiffany ; Farnese, John ; Pollock, Sienna ; Kline Schoder, Robert</creator><creatorcontrib>Wilbur, Jed C. ; Allen, Lindsay ; Audette, William ; Passow, Christian ; VanMalden, Jacob ; Arsenault, James ; Hamilton, Jonathan ; Gould, Kimberly ; Lei, Tiffany ; Farnese, John ; Pollock, Sienna ; Kline Schoder, Robert</creatorcontrib><description>Traditional hearing protection devices focus on attenuating air-conducted sound and are limited by the bone conduction threshold (Berger, 1983). In extreme noise fields, such as aircraft maintainers operating near jet engines on aircraft carriers, the bone conducted pathway carries sufficient energy to damage the cochlea. Here, we describe the development, qualification, and field-testing of a passive Hearing Protection Helmet (HPH) designed to surpass the bone conduction limit. The HPH features a noise-isolating shell sealed to the head via a compliant edge seal. When worn with foam earplugs and tested to ANSI S12.6-2016 (Experimenter Fit), the Noise Reduction Rating (NRR) of the HPH is 38 dB and the Noise Reduction Statistic (NRSA) (ANSI S12.68) (80% to 20% of users) is 45 to 52 dB. We also describe challenges associated with user acceptance of the HPH. User feedback led to the integration of an electronic hear-through system to restore auditory situational awareness. Users also rejected wired communication-enabled ear plugs, resulting in the integration of ear cup speakers and adding challenges associated with setting the hear-through sound pressure level limits. We conclude with anecdotes from trial deployments aboard U.S. Navy Aircraft Carriers in 2020, 2022, and 2023.</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/10.0023757</identifier><language>eng</language><ispartof>The Journal of the Acoustical Society of America, 2023-10, Vol.154 (4_supplement), p.A348-A348</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>207,208,314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wilbur, Jed C.</creatorcontrib><creatorcontrib>Allen, Lindsay</creatorcontrib><creatorcontrib>Audette, William</creatorcontrib><creatorcontrib>Passow, Christian</creatorcontrib><creatorcontrib>VanMalden, Jacob</creatorcontrib><creatorcontrib>Arsenault, James</creatorcontrib><creatorcontrib>Hamilton, Jonathan</creatorcontrib><creatorcontrib>Gould, Kimberly</creatorcontrib><creatorcontrib>Lei, Tiffany</creatorcontrib><creatorcontrib>Farnese, John</creatorcontrib><creatorcontrib>Pollock, Sienna</creatorcontrib><creatorcontrib>Kline Schoder, Robert</creatorcontrib><title>Protecting beyond the bone-conduction limit: Lessons learned developing and fielding a passive Hearing Protection Helmet</title><title>The Journal of the Acoustical Society of America</title><description>Traditional hearing protection devices focus on attenuating air-conducted sound and are limited by the bone conduction threshold (Berger, 1983). In extreme noise fields, such as aircraft maintainers operating near jet engines on aircraft carriers, the bone conducted pathway carries sufficient energy to damage the cochlea. Here, we describe the development, qualification, and field-testing of a passive Hearing Protection Helmet (HPH) designed to surpass the bone conduction limit. The HPH features a noise-isolating shell sealed to the head via a compliant edge seal. When worn with foam earplugs and tested to ANSI S12.6-2016 (Experimenter Fit), the Noise Reduction Rating (NRR) of the HPH is 38 dB and the Noise Reduction Statistic (NRSA) (ANSI S12.68) (80% to 20% of users) is 45 to 52 dB. We also describe challenges associated with user acceptance of the HPH. User feedback led to the integration of an electronic hear-through system to restore auditory situational awareness. Users also rejected wired communication-enabled ear plugs, resulting in the integration of ear cup speakers and adding challenges associated with setting the hear-through sound pressure level limits. We conclude with anecdotes from trial deployments aboard U.S. Navy Aircraft Carriers in 2020, 2022, and 2023.</description><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqVj81uwjAQhC1UJFLg0ifYM1KKnRB-ekWgHDhw4B45yQZcOXbkdRG8PQ6CB-hp9O3O7GoY-xL8W4hEzINynqSrbDVgkcgSHq-zZPHBIs65iBeb5XLEPol-A2brdBOx29FZj5VX5gwl3q2pwV8QSmswrgL9hZU1oFWr_A8ckMgaAo3SGayhxitq2_VhGZKNQl0_ATpJpK4IeXD2k_ebcCtH3aKfsGEjNeH0pWM22-9O2zyunCVy2BSdU61090Lwou_W66tb-i_zAywCViY</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Wilbur, Jed C.</creator><creator>Allen, Lindsay</creator><creator>Audette, William</creator><creator>Passow, Christian</creator><creator>VanMalden, Jacob</creator><creator>Arsenault, James</creator><creator>Hamilton, Jonathan</creator><creator>Gould, Kimberly</creator><creator>Lei, Tiffany</creator><creator>Farnese, John</creator><creator>Pollock, Sienna</creator><creator>Kline Schoder, Robert</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231001</creationdate><title>Protecting beyond the bone-conduction limit: Lessons learned developing and fielding a passive Hearing Protection Helmet</title><author>Wilbur, Jed C. ; Allen, Lindsay ; Audette, William ; Passow, Christian ; VanMalden, Jacob ; Arsenault, James ; Hamilton, Jonathan ; Gould, Kimberly ; Lei, Tiffany ; Farnese, John ; Pollock, Sienna ; Kline Schoder, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_1121_10_00237573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wilbur, Jed C.</creatorcontrib><creatorcontrib>Allen, Lindsay</creatorcontrib><creatorcontrib>Audette, William</creatorcontrib><creatorcontrib>Passow, Christian</creatorcontrib><creatorcontrib>VanMalden, Jacob</creatorcontrib><creatorcontrib>Arsenault, James</creatorcontrib><creatorcontrib>Hamilton, Jonathan</creatorcontrib><creatorcontrib>Gould, Kimberly</creatorcontrib><creatorcontrib>Lei, Tiffany</creatorcontrib><creatorcontrib>Farnese, John</creatorcontrib><creatorcontrib>Pollock, Sienna</creatorcontrib><creatorcontrib>Kline Schoder, Robert</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wilbur, Jed C.</au><au>Allen, Lindsay</au><au>Audette, William</au><au>Passow, Christian</au><au>VanMalden, Jacob</au><au>Arsenault, James</au><au>Hamilton, Jonathan</au><au>Gould, Kimberly</au><au>Lei, Tiffany</au><au>Farnese, John</au><au>Pollock, Sienna</au><au>Kline Schoder, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Protecting beyond the bone-conduction limit: Lessons learned developing and fielding a passive Hearing Protection Helmet</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><date>2023-10-01</date><risdate>2023</risdate><volume>154</volume><issue>4_supplement</issue><spage>A348</spage><epage>A348</epage><pages>A348-A348</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><abstract>Traditional hearing protection devices focus on attenuating air-conducted sound and are limited by the bone conduction threshold (Berger, 1983). In extreme noise fields, such as aircraft maintainers operating near jet engines on aircraft carriers, the bone conducted pathway carries sufficient energy to damage the cochlea. Here, we describe the development, qualification, and field-testing of a passive Hearing Protection Helmet (HPH) designed to surpass the bone conduction limit. The HPH features a noise-isolating shell sealed to the head via a compliant edge seal. When worn with foam earplugs and tested to ANSI S12.6-2016 (Experimenter Fit), the Noise Reduction Rating (NRR) of the HPH is 38 dB and the Noise Reduction Statistic (NRSA) (ANSI S12.68) (80% to 20% of users) is 45 to 52 dB. We also describe challenges associated with user acceptance of the HPH. User feedback led to the integration of an electronic hear-through system to restore auditory situational awareness. Users also rejected wired communication-enabled ear plugs, resulting in the integration of ear cup speakers and adding challenges associated with setting the hear-through sound pressure level limits. We conclude with anecdotes from trial deployments aboard U.S. Navy Aircraft Carriers in 2020, 2022, and 2023.</abstract><doi>10.1121/10.0023757</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-4966 |
ispartof | The Journal of the Acoustical Society of America, 2023-10, Vol.154 (4_supplement), p.A348-A348 |
issn | 0001-4966 1520-8524 |
language | eng |
recordid | cdi_crossref_primary_10_1121_10_0023757 |
source | AIP Journals Complete; Alma/SFX Local Collection; AIP Acoustical Society of America |
title | Protecting beyond the bone-conduction limit: Lessons learned developing and fielding a passive Hearing Protection Helmet |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T15%3A36%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Protecting%20beyond%20the%20bone-conduction%20limit:%20Lessons%20learned%20developing%20and%20fielding%20a%20passive%20Hearing%20Protection%20Helmet&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Wilbur,%20Jed%20C.&rft.date=2023-10-01&rft.volume=154&rft.issue=4_supplement&rft.spage=A348&rft.epage=A348&rft.pages=A348-A348&rft.issn=0001-4966&rft.eissn=1520-8524&rft_id=info:doi/10.1121/10.0023757&rft_dat=%3Ccrossref%3E10_1121_10_0023757%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |