Synthetic lung ultrasound data generation using autoencoder with generative adversarial network

The goal of this study is to test the applicability of a generative adversarial network (GAN) to solve the class unbalancing problem in lung ultrasound (LUS) data. We introduce a supervised autoencoder with conditional latent space. During training, the generator utilizes the weights of the decoder...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of the Acoustical Society of America 2023-03, Vol.153 (3_supplement), p.A190-A190
Hauptverfasser: Fatima, Noreen, Inchingolo, Riccardo, Smargiassi, Andrea, Soldati, Gino, Torri, Elena, Perrone, Tiziano, Demi, Libertario
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!