Using distributed acoustic sensing for ocean ambient sound analysis

Distributed acoustic sensing (DAS) is a technique that utilizes the back scattering in fiber optic cables to densely sample the strain rate in both space and time. This technique has been widely demonstrated as a powerful tool for seismic sensing, but the efficacy of submerged, under-sea cables for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of the Acoustical Society of America 2023-03, Vol.153 (3_supplement), p.A64-A64
Hauptverfasser: Ragland, John, Douglass, Alexander S., Abadi, Shima
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page A64
container_issue 3_supplement
container_start_page A64
container_title The Journal of the Acoustical Society of America
container_volume 153
creator Ragland, John
Douglass, Alexander S.
Abadi, Shima
description Distributed acoustic sensing (DAS) is a technique that utilizes the back scattering in fiber optic cables to densely sample the strain rate in both space and time. This technique has been widely demonstrated as a powerful tool for seismic sensing, but the efficacy of submerged, under-sea cables for ocean acoustic sensing remains underexplored. The ocean observatories initiative (OOI) conducted a distributed acoustic sensing experiment in November of 2021, where two of the fiber optic cables continuously recorded the strain rate for four days. In this talk, the ambient sound field recorded by the OOI DAS experiment will be explored. A statistical comparison of hydrophone measurements and DAS measurements will be presented. Additionally, the possibility of using ocean ambient sound techniques, such as ambient noise interferometry will be explored and compared to hydrophone analysis. [Work supported by ONR.]
doi_str_mv 10.1121/10.0018176
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1121_10_0018176</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1121_10_0018176</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_1121_10_00181763</originalsourceid><addsrcrecordid>eNqVjksOgjAURRujifiZuIKOTdA-fsKYaFyAjkkpxdRAa_rKgN1bDBtwdHLvPYNLyAHYCSCCsydjkMMlW5AA0oiFeRolSxIwX4dJkWVrskF8-5jmcRGQ8olKv2ij0FlVD042lAszoFOCotS_sTWWGiG5pryvldSOohm0FzXvRlS4I6uWdyj3M7fkeLs-ynsorEG0sq0-VvXcjhWwaro5cb4Z_yV_AZYiQp4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Using distributed acoustic sensing for ocean ambient sound analysis</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><source>AIP Acoustical Society of America</source><creator>Ragland, John ; Douglass, Alexander S. ; Abadi, Shima</creator><creatorcontrib>Ragland, John ; Douglass, Alexander S. ; Abadi, Shima</creatorcontrib><description>Distributed acoustic sensing (DAS) is a technique that utilizes the back scattering in fiber optic cables to densely sample the strain rate in both space and time. This technique has been widely demonstrated as a powerful tool for seismic sensing, but the efficacy of submerged, under-sea cables for ocean acoustic sensing remains underexplored. The ocean observatories initiative (OOI) conducted a distributed acoustic sensing experiment in November of 2021, where two of the fiber optic cables continuously recorded the strain rate for four days. In this talk, the ambient sound field recorded by the OOI DAS experiment will be explored. A statistical comparison of hydrophone measurements and DAS measurements will be presented. Additionally, the possibility of using ocean ambient sound techniques, such as ambient noise interferometry will be explored and compared to hydrophone analysis. [Work supported by ONR.]</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/10.0018176</identifier><language>eng</language><ispartof>The Journal of the Acoustical Society of America, 2023-03, Vol.153 (3_supplement), p.A64-A64</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>207,208,314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ragland, John</creatorcontrib><creatorcontrib>Douglass, Alexander S.</creatorcontrib><creatorcontrib>Abadi, Shima</creatorcontrib><title>Using distributed acoustic sensing for ocean ambient sound analysis</title><title>The Journal of the Acoustical Society of America</title><description>Distributed acoustic sensing (DAS) is a technique that utilizes the back scattering in fiber optic cables to densely sample the strain rate in both space and time. This technique has been widely demonstrated as a powerful tool for seismic sensing, but the efficacy of submerged, under-sea cables for ocean acoustic sensing remains underexplored. The ocean observatories initiative (OOI) conducted a distributed acoustic sensing experiment in November of 2021, where two of the fiber optic cables continuously recorded the strain rate for four days. In this talk, the ambient sound field recorded by the OOI DAS experiment will be explored. A statistical comparison of hydrophone measurements and DAS measurements will be presented. Additionally, the possibility of using ocean ambient sound techniques, such as ambient noise interferometry will be explored and compared to hydrophone analysis. [Work supported by ONR.]</description><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqVjksOgjAURRujifiZuIKOTdA-fsKYaFyAjkkpxdRAa_rKgN1bDBtwdHLvPYNLyAHYCSCCsydjkMMlW5AA0oiFeRolSxIwX4dJkWVrskF8-5jmcRGQ8olKv2ij0FlVD042lAszoFOCotS_sTWWGiG5pryvldSOohm0FzXvRlS4I6uWdyj3M7fkeLs-ynsorEG0sq0-VvXcjhWwaro5cb4Z_yV_AZYiQp4</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Ragland, John</creator><creator>Douglass, Alexander S.</creator><creator>Abadi, Shima</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230301</creationdate><title>Using distributed acoustic sensing for ocean ambient sound analysis</title><author>Ragland, John ; Douglass, Alexander S. ; Abadi, Shima</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_1121_10_00181763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ragland, John</creatorcontrib><creatorcontrib>Douglass, Alexander S.</creatorcontrib><creatorcontrib>Abadi, Shima</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ragland, John</au><au>Douglass, Alexander S.</au><au>Abadi, Shima</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using distributed acoustic sensing for ocean ambient sound analysis</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><date>2023-03-01</date><risdate>2023</risdate><volume>153</volume><issue>3_supplement</issue><spage>A64</spage><epage>A64</epage><pages>A64-A64</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><abstract>Distributed acoustic sensing (DAS) is a technique that utilizes the back scattering in fiber optic cables to densely sample the strain rate in both space and time. This technique has been widely demonstrated as a powerful tool for seismic sensing, but the efficacy of submerged, under-sea cables for ocean acoustic sensing remains underexplored. The ocean observatories initiative (OOI) conducted a distributed acoustic sensing experiment in November of 2021, where two of the fiber optic cables continuously recorded the strain rate for four days. In this talk, the ambient sound field recorded by the OOI DAS experiment will be explored. A statistical comparison of hydrophone measurements and DAS measurements will be presented. Additionally, the possibility of using ocean ambient sound techniques, such as ambient noise interferometry will be explored and compared to hydrophone analysis. [Work supported by ONR.]</abstract><doi>10.1121/10.0018176</doi></addata></record>
fulltext fulltext
identifier ISSN: 0001-4966
ispartof The Journal of the Acoustical Society of America, 2023-03, Vol.153 (3_supplement), p.A64-A64
issn 0001-4966
1520-8524
language eng
recordid cdi_crossref_primary_10_1121_10_0018176
source AIP Journals Complete; Alma/SFX Local Collection; AIP Acoustical Society of America
title Using distributed acoustic sensing for ocean ambient sound analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T05%3A42%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20distributed%20acoustic%20sensing%20for%20ocean%20ambient%20sound%20analysis&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Ragland,%20John&rft.date=2023-03-01&rft.volume=153&rft.issue=3_supplement&rft.spage=A64&rft.epage=A64&rft.pages=A64-A64&rft.issn=0001-4966&rft.eissn=1520-8524&rft_id=info:doi/10.1121/10.0018176&rft_dat=%3Ccrossref%3E10_1121_10_0018176%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true