Machine learning approaches for ray-based ocean acoustic tomography

Underwater sound propagation is primarily driven by a nonlinear forward model relating variability of the ocean sound speed profile (SSP) to the acoustic observations (e.g., eigenray arrival times). Ocean acoustic tomography (OAT) methods aim at reconstructing SSP variations (with respect to a refer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of the Acoustical Society of America 2022-12, Vol.152 (6), p.3768-3788
Hauptverfasser: Jin, Jihui, Saha, Priyabrata, Durofchalk, Nicholas, Mukhopadhyay, Saibal, Romberg, Justin, Sabra, Karim G.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3788
container_issue 6
container_start_page 3768
container_title The Journal of the Acoustical Society of America
container_volume 152
creator Jin, Jihui
Saha, Priyabrata
Durofchalk, Nicholas
Mukhopadhyay, Saibal
Romberg, Justin
Sabra, Karim G.
description Underwater sound propagation is primarily driven by a nonlinear forward model relating variability of the ocean sound speed profile (SSP) to the acoustic observations (e.g., eigenray arrival times). Ocean acoustic tomography (OAT) methods aim at reconstructing SSP variations (with respect to a reference environment) from changes of the acoustic measurements between multiple source-receiver pairs. This article investigates the performance of three different OAT methods: (1) model-based methods (i.e., classical ray-based OAT using a linearized forward model), (2) data-driven methods (such as deep learning) to directly learn the inverse model, and (3) a hybrid solution [i.e., the neural adjoint (NA) method], which combines deep learning of the forward model with a standard recursive optimization to estimate SSPs. Additionally, synthetic SSPs were generated to augment the variability of the training set. These methods were tested with modeled ray arrivals calculated for a downward refracting environment with mild fluctuations of the thermocline. Idealized towed and fixed source configurations are considered. Results indicate that merging data-driven and model-based methods can benefit OAT predictions depending on the selected sensing configurations and actual ray coverage of the water column. But ultimately, the robustness of OAT predictions depends on the dynamics of the SSP variations.
doi_str_mv 10.1121/10.0016498
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1121_10_0016498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2759961265</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-2daa494c0cce3da580cc6e4ba65eb24e7e76aa14cb8d68d8ec637ca743dc5b043</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EoqVw4QFQjggUsB3bcY6o4k8q4gLnaGNv2qA0DnaK1LfHVUvFAXGa3dWn2dEQcs7oDWOc3UallClR6AMyZpLTVEsuDsmYxnMqCqVG5CSEj7hKnRXHZJQpqZXmckymL2AWTYdJi-C7ppsn0PfexSOGpHY-8bBOKwhoE2cQugSMW4WhMcnglm7uoV-sT8lRDW3As51OyPvD_dv0KZ29Pj5P72apyQo5pNwCiEIYagxmFqSOg0JRgZJYcYE55gqACVNpq7TVaFSWG8hFZo2sqMgm5HLrGwN-rjAM5bIJBtsWOoyhSp7LolCMKxnRqy1qvAvBY132vlmCX5eMlpvSNrorLcIXO99VtUS7R39aisD1FgimGWBoXLdnvpz_ZVX2tv6P_uP5NxIzg_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2759961265</pqid></control><display><type>article</type><title>Machine learning approaches for ray-based ocean acoustic tomography</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><source>AIP Acoustical Society of America</source><creator>Jin, Jihui ; Saha, Priyabrata ; Durofchalk, Nicholas ; Mukhopadhyay, Saibal ; Romberg, Justin ; Sabra, Karim G.</creator><creatorcontrib>Jin, Jihui ; Saha, Priyabrata ; Durofchalk, Nicholas ; Mukhopadhyay, Saibal ; Romberg, Justin ; Sabra, Karim G.</creatorcontrib><description>Underwater sound propagation is primarily driven by a nonlinear forward model relating variability of the ocean sound speed profile (SSP) to the acoustic observations (e.g., eigenray arrival times). Ocean acoustic tomography (OAT) methods aim at reconstructing SSP variations (with respect to a reference environment) from changes of the acoustic measurements between multiple source-receiver pairs. This article investigates the performance of three different OAT methods: (1) model-based methods (i.e., classical ray-based OAT using a linearized forward model), (2) data-driven methods (such as deep learning) to directly learn the inverse model, and (3) a hybrid solution [i.e., the neural adjoint (NA) method], which combines deep learning of the forward model with a standard recursive optimization to estimate SSPs. Additionally, synthetic SSPs were generated to augment the variability of the training set. These methods were tested with modeled ray arrivals calculated for a downward refracting environment with mild fluctuations of the thermocline. Idealized towed and fixed source configurations are considered. Results indicate that merging data-driven and model-based methods can benefit OAT predictions depending on the selected sensing configurations and actual ray coverage of the water column. But ultimately, the robustness of OAT predictions depends on the dynamics of the SSP variations.</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/10.0016498</identifier><identifier>PMID: 36586825</identifier><identifier>CODEN: JASMAN</identifier><language>eng</language><publisher>United States</publisher><ispartof>The Journal of the Acoustical Society of America, 2022-12, Vol.152 (6), p.3768-3788</ispartof><rights>Acoustical Society of America</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-2daa494c0cce3da580cc6e4ba65eb24e7e76aa14cb8d68d8ec637ca743dc5b043</citedby><cites>FETCH-LOGICAL-c395t-2daa494c0cce3da580cc6e4ba65eb24e7e76aa14cb8d68d8ec637ca743dc5b043</cites><orcidid>0000-0002-6616-197X ; 0000-0002-3761-2962</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jasa/article-lookup/doi/10.1121/10.0016498$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>207,208,314,780,784,794,1565,4512,27924,27925,76384</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36586825$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jin, Jihui</creatorcontrib><creatorcontrib>Saha, Priyabrata</creatorcontrib><creatorcontrib>Durofchalk, Nicholas</creatorcontrib><creatorcontrib>Mukhopadhyay, Saibal</creatorcontrib><creatorcontrib>Romberg, Justin</creatorcontrib><creatorcontrib>Sabra, Karim G.</creatorcontrib><title>Machine learning approaches for ray-based ocean acoustic tomography</title><title>The Journal of the Acoustical Society of America</title><addtitle>J Acoust Soc Am</addtitle><description>Underwater sound propagation is primarily driven by a nonlinear forward model relating variability of the ocean sound speed profile (SSP) to the acoustic observations (e.g., eigenray arrival times). Ocean acoustic tomography (OAT) methods aim at reconstructing SSP variations (with respect to a reference environment) from changes of the acoustic measurements between multiple source-receiver pairs. This article investigates the performance of three different OAT methods: (1) model-based methods (i.e., classical ray-based OAT using a linearized forward model), (2) data-driven methods (such as deep learning) to directly learn the inverse model, and (3) a hybrid solution [i.e., the neural adjoint (NA) method], which combines deep learning of the forward model with a standard recursive optimization to estimate SSPs. Additionally, synthetic SSPs were generated to augment the variability of the training set. These methods were tested with modeled ray arrivals calculated for a downward refracting environment with mild fluctuations of the thermocline. Idealized towed and fixed source configurations are considered. Results indicate that merging data-driven and model-based methods can benefit OAT predictions depending on the selected sensing configurations and actual ray coverage of the water column. But ultimately, the robustness of OAT predictions depends on the dynamics of the SSP variations.</description><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EoqVw4QFQjggUsB3bcY6o4k8q4gLnaGNv2qA0DnaK1LfHVUvFAXGa3dWn2dEQcs7oDWOc3UallClR6AMyZpLTVEsuDsmYxnMqCqVG5CSEj7hKnRXHZJQpqZXmckymL2AWTYdJi-C7ppsn0PfexSOGpHY-8bBOKwhoE2cQugSMW4WhMcnglm7uoV-sT8lRDW3As51OyPvD_dv0KZ29Pj5P72apyQo5pNwCiEIYagxmFqSOg0JRgZJYcYE55gqACVNpq7TVaFSWG8hFZo2sqMgm5HLrGwN-rjAM5bIJBtsWOoyhSp7LolCMKxnRqy1qvAvBY132vlmCX5eMlpvSNrorLcIXO99VtUS7R39aisD1FgimGWBoXLdnvpz_ZVX2tv6P_uP5NxIzg_w</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Jin, Jihui</creator><creator>Saha, Priyabrata</creator><creator>Durofchalk, Nicholas</creator><creator>Mukhopadhyay, Saibal</creator><creator>Romberg, Justin</creator><creator>Sabra, Karim G.</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6616-197X</orcidid><orcidid>https://orcid.org/0000-0002-3761-2962</orcidid></search><sort><creationdate>202212</creationdate><title>Machine learning approaches for ray-based ocean acoustic tomography</title><author>Jin, Jihui ; Saha, Priyabrata ; Durofchalk, Nicholas ; Mukhopadhyay, Saibal ; Romberg, Justin ; Sabra, Karim G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-2daa494c0cce3da580cc6e4ba65eb24e7e76aa14cb8d68d8ec637ca743dc5b043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Jihui</creatorcontrib><creatorcontrib>Saha, Priyabrata</creatorcontrib><creatorcontrib>Durofchalk, Nicholas</creatorcontrib><creatorcontrib>Mukhopadhyay, Saibal</creatorcontrib><creatorcontrib>Romberg, Justin</creatorcontrib><creatorcontrib>Sabra, Karim G.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Jihui</au><au>Saha, Priyabrata</au><au>Durofchalk, Nicholas</au><au>Mukhopadhyay, Saibal</au><au>Romberg, Justin</au><au>Sabra, Karim G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning approaches for ray-based ocean acoustic tomography</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><addtitle>J Acoust Soc Am</addtitle><date>2022-12</date><risdate>2022</risdate><volume>152</volume><issue>6</issue><spage>3768</spage><epage>3788</epage><pages>3768-3788</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><coden>JASMAN</coden><abstract>Underwater sound propagation is primarily driven by a nonlinear forward model relating variability of the ocean sound speed profile (SSP) to the acoustic observations (e.g., eigenray arrival times). Ocean acoustic tomography (OAT) methods aim at reconstructing SSP variations (with respect to a reference environment) from changes of the acoustic measurements between multiple source-receiver pairs. This article investigates the performance of three different OAT methods: (1) model-based methods (i.e., classical ray-based OAT using a linearized forward model), (2) data-driven methods (such as deep learning) to directly learn the inverse model, and (3) a hybrid solution [i.e., the neural adjoint (NA) method], which combines deep learning of the forward model with a standard recursive optimization to estimate SSPs. Additionally, synthetic SSPs were generated to augment the variability of the training set. These methods were tested with modeled ray arrivals calculated for a downward refracting environment with mild fluctuations of the thermocline. Idealized towed and fixed source configurations are considered. Results indicate that merging data-driven and model-based methods can benefit OAT predictions depending on the selected sensing configurations and actual ray coverage of the water column. But ultimately, the robustness of OAT predictions depends on the dynamics of the SSP variations.</abstract><cop>United States</cop><pmid>36586825</pmid><doi>10.1121/10.0016498</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-6616-197X</orcidid><orcidid>https://orcid.org/0000-0002-3761-2962</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0001-4966
ispartof The Journal of the Acoustical Society of America, 2022-12, Vol.152 (6), p.3768-3788
issn 0001-4966
1520-8524
language eng
recordid cdi_crossref_primary_10_1121_10_0016498
source AIP Journals Complete; Alma/SFX Local Collection; AIP Acoustical Society of America
title Machine learning approaches for ray-based ocean acoustic tomography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T21%3A22%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20approaches%20for%20ray-based%20ocean%20acoustic%20tomography&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Jin,%20Jihui&rft.date=2022-12&rft.volume=152&rft.issue=6&rft.spage=3768&rft.epage=3788&rft.pages=3768-3788&rft.issn=0001-4966&rft.eissn=1520-8524&rft.coden=JASMAN&rft_id=info:doi/10.1121/10.0016498&rft_dat=%3Cproquest_cross%3E2759961265%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2759961265&rft_id=info:pmid/36586825&rfr_iscdi=true