Willis coupling in micromorphic elasticity

Acoustic and elastic metamaterials (AEMM) are artificial materials whose performance is engineered to exceed naturally occurring materials and conventional composites, often leveraging complex microstructural geometry and strong dispersion. Generalized continuum (GC) theories, such as micromorphic e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of the Acoustical Society of America 2021-10, Vol.150 (4), p.A107-A108
Hauptverfasser: Wallen, Samuel P., Goldsberry, Benjamin M., Haberman, Michael R.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page A108
container_issue 4
container_start_page A107
container_title The Journal of the Acoustical Society of America
container_volume 150
creator Wallen, Samuel P.
Goldsberry, Benjamin M.
Haberman, Michael R.
description Acoustic and elastic metamaterials (AEMM) are artificial materials whose performance is engineered to exceed naturally occurring materials and conventional composites, often leveraging complex microstructural geometry and strong dispersion. Generalized continuum (GC) theories, such as micromorphic elasticity, are extensions of classical elasticity that capture the effects of microstructure via inclusion of internal kinematic variables and/or higher-order gradients of displacement, and have received renewed interest as potential reduced-order models for AEMM. An alternative AEMM modeling framework is the elastodynamic homogenization theory of Willis, which yields an effective medium whose constitutive relations contain stress-acceleration and momentum-strain-rate couplings. Despite the recent popularity of the GC and Willis methods, a comprehensive description of their relationship remains lacking. In the present work, we derive an explicit connection between the Willis and GC models. Specifically, we augment the variational formulation of Mindlin [Arch. Ration. Mech. Anal., 16, 51–78 (1964)] to account for microscale asymmetry of mass density and demonstrate that the resulting boundary value problem may be expressed in the form of a Willis material. This approach helps to elucidate the physical origins of Willis coupling and may offer insights about how other emergent material properties arise from microstructural constituents. [Work supported by ONR.]
doi_str_mv 10.1121/10.0007783
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1121_10_0007783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jasa</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1123-5bc33bebe648cc75c1d75dbe17e219563888b3d47c627610be656b8a516561c83</originalsourceid><addsrcrecordid>eNp9j0tLAzEUhYMoOFY3_oJZV6K5k8ljllK0CoVuKi6H5E6qkcyDZFz035vSrl193MvH4RxC7oE9AlTwlMkYU0rzC1KAqBjVoqovSZG_QOtGymtyk9JPPoXmTUGWnz4En0ocf6fgh6_SD2XvMY79GKdvj6ULJs0e_Xy4JVd7E5K7O3NBPl5fdqs3utmu31fPG4q5AqfCIufWWSdrjagEQqdEZx0oV0EjJNdaW97VCmWlJLAsCmm1EZAJqPmCLE-5uUVK0e3bKfrexEMLrD2uPPK8MssPJznlimb24_Cf_QebhlCN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Willis coupling in micromorphic elasticity</title><source>AIP Journals Complete</source><source>Acoustical Society of America (AIP)</source><source>Alma/SFX Local Collection</source><creator>Wallen, Samuel P. ; Goldsberry, Benjamin M. ; Haberman, Michael R.</creator><creatorcontrib>Wallen, Samuel P. ; Goldsberry, Benjamin M. ; Haberman, Michael R.</creatorcontrib><description>Acoustic and elastic metamaterials (AEMM) are artificial materials whose performance is engineered to exceed naturally occurring materials and conventional composites, often leveraging complex microstructural geometry and strong dispersion. Generalized continuum (GC) theories, such as micromorphic elasticity, are extensions of classical elasticity that capture the effects of microstructure via inclusion of internal kinematic variables and/or higher-order gradients of displacement, and have received renewed interest as potential reduced-order models for AEMM. An alternative AEMM modeling framework is the elastodynamic homogenization theory of Willis, which yields an effective medium whose constitutive relations contain stress-acceleration and momentum-strain-rate couplings. Despite the recent popularity of the GC and Willis methods, a comprehensive description of their relationship remains lacking. In the present work, we derive an explicit connection between the Willis and GC models. Specifically, we augment the variational formulation of Mindlin [Arch. Ration. Mech. Anal., 16, 51–78 (1964)] to account for microscale asymmetry of mass density and demonstrate that the resulting boundary value problem may be expressed in the form of a Willis material. This approach helps to elucidate the physical origins of Willis coupling and may offer insights about how other emergent material properties arise from microstructural constituents. [Work supported by ONR.]</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/10.0007783</identifier><identifier>CODEN: JASMAN</identifier><language>eng</language><ispartof>The Journal of the Acoustical Society of America, 2021-10, Vol.150 (4), p.A107-A108</ispartof><rights>Acoustical Society of America</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1123-5bc33bebe648cc75c1d75dbe17e219563888b3d47c627610be656b8a516561c83</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jasa/article-lookup/doi/10.1121/10.0007783$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>207,208,314,780,784,794,1565,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Wallen, Samuel P.</creatorcontrib><creatorcontrib>Goldsberry, Benjamin M.</creatorcontrib><creatorcontrib>Haberman, Michael R.</creatorcontrib><title>Willis coupling in micromorphic elasticity</title><title>The Journal of the Acoustical Society of America</title><description>Acoustic and elastic metamaterials (AEMM) are artificial materials whose performance is engineered to exceed naturally occurring materials and conventional composites, often leveraging complex microstructural geometry and strong dispersion. Generalized continuum (GC) theories, such as micromorphic elasticity, are extensions of classical elasticity that capture the effects of microstructure via inclusion of internal kinematic variables and/or higher-order gradients of displacement, and have received renewed interest as potential reduced-order models for AEMM. An alternative AEMM modeling framework is the elastodynamic homogenization theory of Willis, which yields an effective medium whose constitutive relations contain stress-acceleration and momentum-strain-rate couplings. Despite the recent popularity of the GC and Willis methods, a comprehensive description of their relationship remains lacking. In the present work, we derive an explicit connection between the Willis and GC models. Specifically, we augment the variational formulation of Mindlin [Arch. Ration. Mech. Anal., 16, 51–78 (1964)] to account for microscale asymmetry of mass density and demonstrate that the resulting boundary value problem may be expressed in the form of a Willis material. This approach helps to elucidate the physical origins of Willis coupling and may offer insights about how other emergent material properties arise from microstructural constituents. [Work supported by ONR.]</description><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9j0tLAzEUhYMoOFY3_oJZV6K5k8ljllK0CoVuKi6H5E6qkcyDZFz035vSrl193MvH4RxC7oE9AlTwlMkYU0rzC1KAqBjVoqovSZG_QOtGymtyk9JPPoXmTUGWnz4En0ocf6fgh6_SD2XvMY79GKdvj6ULJs0e_Xy4JVd7E5K7O3NBPl5fdqs3utmu31fPG4q5AqfCIufWWSdrjagEQqdEZx0oV0EjJNdaW97VCmWlJLAsCmm1EZAJqPmCLE-5uUVK0e3bKfrexEMLrD2uPPK8MssPJznlimb24_Cf_QebhlCN</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Wallen, Samuel P.</creator><creator>Goldsberry, Benjamin M.</creator><creator>Haberman, Michael R.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202110</creationdate><title>Willis coupling in micromorphic elasticity</title><author>Wallen, Samuel P. ; Goldsberry, Benjamin M. ; Haberman, Michael R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1123-5bc33bebe648cc75c1d75dbe17e219563888b3d47c627610be656b8a516561c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wallen, Samuel P.</creatorcontrib><creatorcontrib>Goldsberry, Benjamin M.</creatorcontrib><creatorcontrib>Haberman, Michael R.</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wallen, Samuel P.</au><au>Goldsberry, Benjamin M.</au><au>Haberman, Michael R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Willis coupling in micromorphic elasticity</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><date>2021-10</date><risdate>2021</risdate><volume>150</volume><issue>4</issue><spage>A107</spage><epage>A108</epage><pages>A107-A108</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><coden>JASMAN</coden><abstract>Acoustic and elastic metamaterials (AEMM) are artificial materials whose performance is engineered to exceed naturally occurring materials and conventional composites, often leveraging complex microstructural geometry and strong dispersion. Generalized continuum (GC) theories, such as micromorphic elasticity, are extensions of classical elasticity that capture the effects of microstructure via inclusion of internal kinematic variables and/or higher-order gradients of displacement, and have received renewed interest as potential reduced-order models for AEMM. An alternative AEMM modeling framework is the elastodynamic homogenization theory of Willis, which yields an effective medium whose constitutive relations contain stress-acceleration and momentum-strain-rate couplings. Despite the recent popularity of the GC and Willis methods, a comprehensive description of their relationship remains lacking. In the present work, we derive an explicit connection between the Willis and GC models. Specifically, we augment the variational formulation of Mindlin [Arch. Ration. Mech. Anal., 16, 51–78 (1964)] to account for microscale asymmetry of mass density and demonstrate that the resulting boundary value problem may be expressed in the form of a Willis material. This approach helps to elucidate the physical origins of Willis coupling and may offer insights about how other emergent material properties arise from microstructural constituents. [Work supported by ONR.]</abstract><doi>10.1121/10.0007783</doi><tpages>2</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-4966
ispartof The Journal of the Acoustical Society of America, 2021-10, Vol.150 (4), p.A107-A108
issn 0001-4966
1520-8524
language eng
recordid cdi_crossref_primary_10_1121_10_0007783
source AIP Journals Complete; Acoustical Society of America (AIP); Alma/SFX Local Collection
title Willis coupling in micromorphic elasticity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A18%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Willis%20coupling%20in%20micromorphic%20elasticity&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Wallen,%20Samuel%20P.&rft.date=2021-10&rft.volume=150&rft.issue=4&rft.spage=A107&rft.epage=A108&rft.pages=A107-A108&rft.issn=0001-4966&rft.eissn=1520-8524&rft.coden=JASMAN&rft_id=info:doi/10.1121/10.0007783&rft_dat=%3Cscitation_cross%3Ejasa%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true