A numerical model for acoustophoretic separation based on elastic moduli differences of cells/microparticles
Acoustophoresis is known to be a promising technique in cell and particle separation. A more comprehensive study that includes the elastic model of the human cell is needed for more realistic simulations of acoustophoretic cell manipulation and separation. Here, we implemented a finite-element based...
Gespeichert in:
Veröffentlicht in: | The Journal of the Acoustical Society of America 2021-10, Vol.150 (4), p.A62-A62 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | A62 |
---|---|
container_issue | 4 |
container_start_page | A62 |
container_title | The Journal of the Acoustical Society of America |
container_volume | 150 |
creator | Karaman, Alara Açıkgöz, Hande Nur Çetin, Barbaros Özer, Mehmet Bülent |
description | Acoustophoresis is known to be a promising technique in cell and particle separation. A more comprehensive study that includes the elastic model of the human cell is needed for more realistic simulations of acoustophoretic cell manipulation and separation. Here, we implemented a finite-element based approach that consists of the simple elastic modeling of a human cell to calculate the acoustic radiation force acting on the cells. Using this numerical model, new separation modes based on the difference in elastic properties of particles and cells are found and simulated. The proposed numerical simulation does not utilize the widely used Gor’kov’s analytical acoustophoretic force formulation since the proposed new separation mode is observed at frequencies where acoustic wavelengths are comparable to cell dimensions. Unlike most studies in the literature, the proposed numerical model accounts for acoustic and hydrodynamic particle-particle interactions for the simulation of the cell trajectories. We believe this proposed simulation method and the proposed mode of acoustophoretic separation will be beneficial for separating similar-sized cells/particles with different elastic moduli using acoustophoresis. |
doi_str_mv | 10.1121/10.0007627 |
format | Article |
fullrecord | <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1121_10_0007627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jasa</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1127-760a2e8b070223dc19733e810d9a063cb47282600d29d8178985387411cdf97d3</originalsourceid><addsrcrecordid>eNp9ULtOAzEQtBBIhEDDF7gGHfHj7myXUQQBKRIN1JFjr4WRL468dwV_j0NSU80-ZnY1Q8g9Z0-cC76oyBhTvVAXZMY7wRrdifaSzOqUN63p-2tyg_hd205LMyNpSffTACU6m-iQPSQacqHW5QnHfPjKBcboKMLBFjvGvKc7i-BpLSBZPO6qakqR-hgCFNg7QJoDdZASLoboSq7SykuAt-Qq2IRwd8Y5-Xx5_li9Npv39dtquWlcNaEa1TMrQO-YYkJI77hRUoLmzBvLeul2rRJa9Ix5YbzmShvdSa1azp0PRnk5Jw-nu_U5YoGwPZQ42PKz5Wx7zOmI55wq-fFERhfHP4v_sX8BBp1oXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A numerical model for acoustophoretic separation based on elastic moduli differences of cells/microparticles</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><source>AIP Acoustical Society of America</source><creator>Karaman, Alara ; Açıkgöz, Hande Nur ; Çetin, Barbaros ; Özer, Mehmet Bülent</creator><creatorcontrib>Karaman, Alara ; Açıkgöz, Hande Nur ; Çetin, Barbaros ; Özer, Mehmet Bülent</creatorcontrib><description>Acoustophoresis is known to be a promising technique in cell and particle separation. A more comprehensive study that includes the elastic model of the human cell is needed for more realistic simulations of acoustophoretic cell manipulation and separation. Here, we implemented a finite-element based approach that consists of the simple elastic modeling of a human cell to calculate the acoustic radiation force acting on the cells. Using this numerical model, new separation modes based on the difference in elastic properties of particles and cells are found and simulated. The proposed numerical simulation does not utilize the widely used Gor’kov’s analytical acoustophoretic force formulation since the proposed new separation mode is observed at frequencies where acoustic wavelengths are comparable to cell dimensions. Unlike most studies in the literature, the proposed numerical model accounts for acoustic and hydrodynamic particle-particle interactions for the simulation of the cell trajectories. We believe this proposed simulation method and the proposed mode of acoustophoretic separation will be beneficial for separating similar-sized cells/particles with different elastic moduli using acoustophoresis.</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/10.0007627</identifier><identifier>CODEN: JASMAN</identifier><language>eng</language><ispartof>The Journal of the Acoustical Society of America, 2021-10, Vol.150 (4), p.A62-A62</ispartof><rights>Acoustical Society of America</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1127-760a2e8b070223dc19733e810d9a063cb47282600d29d8178985387411cdf97d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jasa/article-lookup/doi/10.1121/10.0007627$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>207,208,314,780,784,794,1565,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Karaman, Alara</creatorcontrib><creatorcontrib>Açıkgöz, Hande Nur</creatorcontrib><creatorcontrib>Çetin, Barbaros</creatorcontrib><creatorcontrib>Özer, Mehmet Bülent</creatorcontrib><title>A numerical model for acoustophoretic separation based on elastic moduli differences of cells/microparticles</title><title>The Journal of the Acoustical Society of America</title><description>Acoustophoresis is known to be a promising technique in cell and particle separation. A more comprehensive study that includes the elastic model of the human cell is needed for more realistic simulations of acoustophoretic cell manipulation and separation. Here, we implemented a finite-element based approach that consists of the simple elastic modeling of a human cell to calculate the acoustic radiation force acting on the cells. Using this numerical model, new separation modes based on the difference in elastic properties of particles and cells are found and simulated. The proposed numerical simulation does not utilize the widely used Gor’kov’s analytical acoustophoretic force formulation since the proposed new separation mode is observed at frequencies where acoustic wavelengths are comparable to cell dimensions. Unlike most studies in the literature, the proposed numerical model accounts for acoustic and hydrodynamic particle-particle interactions for the simulation of the cell trajectories. We believe this proposed simulation method and the proposed mode of acoustophoretic separation will be beneficial for separating similar-sized cells/particles with different elastic moduli using acoustophoresis.</description><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9ULtOAzEQtBBIhEDDF7gGHfHj7myXUQQBKRIN1JFjr4WRL468dwV_j0NSU80-ZnY1Q8g9Z0-cC76oyBhTvVAXZMY7wRrdifaSzOqUN63p-2tyg_hd205LMyNpSffTACU6m-iQPSQacqHW5QnHfPjKBcboKMLBFjvGvKc7i-BpLSBZPO6qakqR-hgCFNg7QJoDdZASLoboSq7SykuAt-Qq2IRwd8Y5-Xx5_li9Npv39dtquWlcNaEa1TMrQO-YYkJI77hRUoLmzBvLeul2rRJa9Ix5YbzmShvdSa1azp0PRnk5Jw-nu_U5YoGwPZQ42PKz5Wx7zOmI55wq-fFERhfHP4v_sX8BBp1oXA</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Karaman, Alara</creator><creator>Açıkgöz, Hande Nur</creator><creator>Çetin, Barbaros</creator><creator>Özer, Mehmet Bülent</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202110</creationdate><title>A numerical model for acoustophoretic separation based on elastic moduli differences of cells/microparticles</title><author>Karaman, Alara ; Açıkgöz, Hande Nur ; Çetin, Barbaros ; Özer, Mehmet Bülent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1127-760a2e8b070223dc19733e810d9a063cb47282600d29d8178985387411cdf97d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karaman, Alara</creatorcontrib><creatorcontrib>Açıkgöz, Hande Nur</creatorcontrib><creatorcontrib>Çetin, Barbaros</creatorcontrib><creatorcontrib>Özer, Mehmet Bülent</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karaman, Alara</au><au>Açıkgöz, Hande Nur</au><au>Çetin, Barbaros</au><au>Özer, Mehmet Bülent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A numerical model for acoustophoretic separation based on elastic moduli differences of cells/microparticles</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><date>2021-10</date><risdate>2021</risdate><volume>150</volume><issue>4</issue><spage>A62</spage><epage>A62</epage><pages>A62-A62</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><coden>JASMAN</coden><abstract>Acoustophoresis is known to be a promising technique in cell and particle separation. A more comprehensive study that includes the elastic model of the human cell is needed for more realistic simulations of acoustophoretic cell manipulation and separation. Here, we implemented a finite-element based approach that consists of the simple elastic modeling of a human cell to calculate the acoustic radiation force acting on the cells. Using this numerical model, new separation modes based on the difference in elastic properties of particles and cells are found and simulated. The proposed numerical simulation does not utilize the widely used Gor’kov’s analytical acoustophoretic force formulation since the proposed new separation mode is observed at frequencies where acoustic wavelengths are comparable to cell dimensions. Unlike most studies in the literature, the proposed numerical model accounts for acoustic and hydrodynamic particle-particle interactions for the simulation of the cell trajectories. We believe this proposed simulation method and the proposed mode of acoustophoretic separation will be beneficial for separating similar-sized cells/particles with different elastic moduli using acoustophoresis.</abstract><doi>10.1121/10.0007627</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-4966 |
ispartof | The Journal of the Acoustical Society of America, 2021-10, Vol.150 (4), p.A62-A62 |
issn | 0001-4966 1520-8524 |
language | eng |
recordid | cdi_crossref_primary_10_1121_10_0007627 |
source | AIP Journals Complete; Alma/SFX Local Collection; AIP Acoustical Society of America |
title | A numerical model for acoustophoretic separation based on elastic moduli differences of cells/microparticles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A32%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20numerical%20model%20for%20acoustophoretic%20separation%20based%20on%20elastic%20moduli%20differences%20of%20cells/microparticles&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Karaman,%20Alara&rft.date=2021-10&rft.volume=150&rft.issue=4&rft.spage=A62&rft.epage=A62&rft.pages=A62-A62&rft.issn=0001-4966&rft.eissn=1520-8524&rft.coden=JASMAN&rft_id=info:doi/10.1121/10.0007627&rft_dat=%3Cscitation_cross%3Ejasa%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |