A numerical model for acoustophoretic separation based on elastic moduli differences of cells/microparticles

Acoustophoresis is known to be a promising technique in cell and particle separation. A more comprehensive study that includes the elastic model of the human cell is needed for more realistic simulations of acoustophoretic cell manipulation and separation. Here, we implemented a finite-element based...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of the Acoustical Society of America 2021-10, Vol.150 (4), p.A62-A62
Hauptverfasser: Karaman, Alara, Açıkgöz, Hande Nur, Çetin, Barbaros, Özer, Mehmet Bülent
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page A62
container_issue 4
container_start_page A62
container_title The Journal of the Acoustical Society of America
container_volume 150
creator Karaman, Alara
Açıkgöz, Hande Nur
Çetin, Barbaros
Özer, Mehmet Bülent
description Acoustophoresis is known to be a promising technique in cell and particle separation. A more comprehensive study that includes the elastic model of the human cell is needed for more realistic simulations of acoustophoretic cell manipulation and separation. Here, we implemented a finite-element based approach that consists of the simple elastic modeling of a human cell to calculate the acoustic radiation force acting on the cells. Using this numerical model, new separation modes based on the difference in elastic properties of particles and cells are found and simulated. The proposed numerical simulation does not utilize the widely used Gor’kov’s analytical acoustophoretic force formulation since the proposed new separation mode is observed at frequencies where acoustic wavelengths are comparable to cell dimensions. Unlike most studies in the literature, the proposed numerical model accounts for acoustic and hydrodynamic particle-particle interactions for the simulation of the cell trajectories. We believe this proposed simulation method and the proposed mode of acoustophoretic separation will be beneficial for separating similar-sized cells/particles with different elastic moduli using acoustophoresis.
doi_str_mv 10.1121/10.0007627
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1121_10_0007627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jasa</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1127-760a2e8b070223dc19733e810d9a063cb47282600d29d8178985387411cdf97d3</originalsourceid><addsrcrecordid>eNp9ULtOAzEQtBBIhEDDF7gGHfHj7myXUQQBKRIN1JFjr4WRL468dwV_j0NSU80-ZnY1Q8g9Z0-cC76oyBhTvVAXZMY7wRrdifaSzOqUN63p-2tyg_hd205LMyNpSffTACU6m-iQPSQacqHW5QnHfPjKBcboKMLBFjvGvKc7i-BpLSBZPO6qakqR-hgCFNg7QJoDdZASLoboSq7SykuAt-Qq2IRwd8Y5-Xx5_li9Npv39dtquWlcNaEa1TMrQO-YYkJI77hRUoLmzBvLeul2rRJa9Ix5YbzmShvdSa1azp0PRnk5Jw-nu_U5YoGwPZQ42PKz5Wx7zOmI55wq-fFERhfHP4v_sX8BBp1oXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A numerical model for acoustophoretic separation based on elastic moduli differences of cells/microparticles</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><source>AIP Acoustical Society of America</source><creator>Karaman, Alara ; Açıkgöz, Hande Nur ; Çetin, Barbaros ; Özer, Mehmet Bülent</creator><creatorcontrib>Karaman, Alara ; Açıkgöz, Hande Nur ; Çetin, Barbaros ; Özer, Mehmet Bülent</creatorcontrib><description>Acoustophoresis is known to be a promising technique in cell and particle separation. A more comprehensive study that includes the elastic model of the human cell is needed for more realistic simulations of acoustophoretic cell manipulation and separation. Here, we implemented a finite-element based approach that consists of the simple elastic modeling of a human cell to calculate the acoustic radiation force acting on the cells. Using this numerical model, new separation modes based on the difference in elastic properties of particles and cells are found and simulated. The proposed numerical simulation does not utilize the widely used Gor’kov’s analytical acoustophoretic force formulation since the proposed new separation mode is observed at frequencies where acoustic wavelengths are comparable to cell dimensions. Unlike most studies in the literature, the proposed numerical model accounts for acoustic and hydrodynamic particle-particle interactions for the simulation of the cell trajectories. We believe this proposed simulation method and the proposed mode of acoustophoretic separation will be beneficial for separating similar-sized cells/particles with different elastic moduli using acoustophoresis.</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/10.0007627</identifier><identifier>CODEN: JASMAN</identifier><language>eng</language><ispartof>The Journal of the Acoustical Society of America, 2021-10, Vol.150 (4), p.A62-A62</ispartof><rights>Acoustical Society of America</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1127-760a2e8b070223dc19733e810d9a063cb47282600d29d8178985387411cdf97d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jasa/article-lookup/doi/10.1121/10.0007627$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>207,208,314,780,784,794,1565,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Karaman, Alara</creatorcontrib><creatorcontrib>Açıkgöz, Hande Nur</creatorcontrib><creatorcontrib>Çetin, Barbaros</creatorcontrib><creatorcontrib>Özer, Mehmet Bülent</creatorcontrib><title>A numerical model for acoustophoretic separation based on elastic moduli differences of cells/microparticles</title><title>The Journal of the Acoustical Society of America</title><description>Acoustophoresis is known to be a promising technique in cell and particle separation. A more comprehensive study that includes the elastic model of the human cell is needed for more realistic simulations of acoustophoretic cell manipulation and separation. Here, we implemented a finite-element based approach that consists of the simple elastic modeling of a human cell to calculate the acoustic radiation force acting on the cells. Using this numerical model, new separation modes based on the difference in elastic properties of particles and cells are found and simulated. The proposed numerical simulation does not utilize the widely used Gor’kov’s analytical acoustophoretic force formulation since the proposed new separation mode is observed at frequencies where acoustic wavelengths are comparable to cell dimensions. Unlike most studies in the literature, the proposed numerical model accounts for acoustic and hydrodynamic particle-particle interactions for the simulation of the cell trajectories. We believe this proposed simulation method and the proposed mode of acoustophoretic separation will be beneficial for separating similar-sized cells/particles with different elastic moduli using acoustophoresis.</description><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9ULtOAzEQtBBIhEDDF7gGHfHj7myXUQQBKRIN1JFjr4WRL468dwV_j0NSU80-ZnY1Q8g9Z0-cC76oyBhTvVAXZMY7wRrdifaSzOqUN63p-2tyg_hd205LMyNpSffTACU6m-iQPSQacqHW5QnHfPjKBcboKMLBFjvGvKc7i-BpLSBZPO6qakqR-hgCFNg7QJoDdZASLoboSq7SykuAt-Qq2IRwd8Y5-Xx5_li9Npv39dtquWlcNaEa1TMrQO-YYkJI77hRUoLmzBvLeul2rRJa9Ix5YbzmShvdSa1azp0PRnk5Jw-nu_U5YoGwPZQ42PKz5Wx7zOmI55wq-fFERhfHP4v_sX8BBp1oXA</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Karaman, Alara</creator><creator>Açıkgöz, Hande Nur</creator><creator>Çetin, Barbaros</creator><creator>Özer, Mehmet Bülent</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202110</creationdate><title>A numerical model for acoustophoretic separation based on elastic moduli differences of cells/microparticles</title><author>Karaman, Alara ; Açıkgöz, Hande Nur ; Çetin, Barbaros ; Özer, Mehmet Bülent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1127-760a2e8b070223dc19733e810d9a063cb47282600d29d8178985387411cdf97d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karaman, Alara</creatorcontrib><creatorcontrib>Açıkgöz, Hande Nur</creatorcontrib><creatorcontrib>Çetin, Barbaros</creatorcontrib><creatorcontrib>Özer, Mehmet Bülent</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karaman, Alara</au><au>Açıkgöz, Hande Nur</au><au>Çetin, Barbaros</au><au>Özer, Mehmet Bülent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A numerical model for acoustophoretic separation based on elastic moduli differences of cells/microparticles</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><date>2021-10</date><risdate>2021</risdate><volume>150</volume><issue>4</issue><spage>A62</spage><epage>A62</epage><pages>A62-A62</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><coden>JASMAN</coden><abstract>Acoustophoresis is known to be a promising technique in cell and particle separation. A more comprehensive study that includes the elastic model of the human cell is needed for more realistic simulations of acoustophoretic cell manipulation and separation. Here, we implemented a finite-element based approach that consists of the simple elastic modeling of a human cell to calculate the acoustic radiation force acting on the cells. Using this numerical model, new separation modes based on the difference in elastic properties of particles and cells are found and simulated. The proposed numerical simulation does not utilize the widely used Gor’kov’s analytical acoustophoretic force formulation since the proposed new separation mode is observed at frequencies where acoustic wavelengths are comparable to cell dimensions. Unlike most studies in the literature, the proposed numerical model accounts for acoustic and hydrodynamic particle-particle interactions for the simulation of the cell trajectories. We believe this proposed simulation method and the proposed mode of acoustophoretic separation will be beneficial for separating similar-sized cells/particles with different elastic moduli using acoustophoresis.</abstract><doi>10.1121/10.0007627</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-4966
ispartof The Journal of the Acoustical Society of America, 2021-10, Vol.150 (4), p.A62-A62
issn 0001-4966
1520-8524
language eng
recordid cdi_crossref_primary_10_1121_10_0007627
source AIP Journals Complete; Alma/SFX Local Collection; AIP Acoustical Society of America
title A numerical model for acoustophoretic separation based on elastic moduli differences of cells/microparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A32%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20numerical%20model%20for%20acoustophoretic%20separation%20based%20on%20elastic%20moduli%20differences%20of%20cells/microparticles&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Karaman,%20Alara&rft.date=2021-10&rft.volume=150&rft.issue=4&rft.spage=A62&rft.epage=A62&rft.pages=A62-A62&rft.issn=0001-4966&rft.eissn=1520-8524&rft.coden=JASMAN&rft_id=info:doi/10.1121/10.0007627&rft_dat=%3Cscitation_cross%3Ejasa%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true