Projectile motion with quadratic drag

Two-dimensional coupled nonlinear equations of projectile motion with air resistance in the form of quadratic drag are often treated as inseparable and solvable only numerically. However, when they are recast in terms of the angle between the projectile velocity and the horizontal, they become compl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of physics 2023-04, Vol.91 (4), p.258-263
1. Verfasser: Bradshaw, John L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 263
container_issue 4
container_start_page 258
container_title American journal of physics
container_volume 91
creator Bradshaw, John L.
description Two-dimensional coupled nonlinear equations of projectile motion with air resistance in the form of quadratic drag are often treated as inseparable and solvable only numerically. However, when they are recast in terms of the angle between the projectile velocity and the horizontal, they become completely uncoupled and possess analytic solutions for projectile velocities as a function of that angle. The equations relating the time and position coordinates to this angle are not integrable in terms of elementary functions but are easy to integrate numerically. Additionally, energy equations explicitly including dissipation terms can be developed as integrals of the equations of motion. One-dimensional numerical integrations can be treated in a pedagogically straightforward way using numerical analysis software or even within a spreadsheet, making this topic accessible to undergraduates. We present this approach with sample numerical results for velocity components, trajectories, and energy-balance of a baseball-sized projectile.
doi_str_mv 10.1119/5.0095643
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1119_5_0095643</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2791678264</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-5a53b773e3770fcbfd3052cee50b8133e0346a031c4f1437b1c5cd06a2c2d9723</originalsourceid><addsrcrecordid>eNqdkE1LxDAYhIMoWKsH_0FBPCh0fZO3aZqjLOsHLOhBzyFNU23Z3ewmqeK_t0sXvHsaBh5mmCHkksKMUirv-AxA8rLAI5JQWWDOJMhjkgAAyyUHfkrOQuhHK2kFCbl-9a63JnYrm61d7Nwm--7iZ7YbdON17Ew2ysc5OWn1KtiLg6bk_WHxNn_Kly-Pz_P7ZW6QiZhzzbEWAi0KAa2p2waBM2Mth7qiiBawKDUgNUVLCxQ1Ndw0UGpmWCMFw5RcTblb73aDDVH1bvCbsVIxIWkpKjZOS8nNRBnvQvC2VVvfrbX_URTU_gXF1eGFkb2d2GC6qPf7_gd_Of8Hqm3T4i-H4WjG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2791678264</pqid></control><display><type>article</type><title>Projectile motion with quadratic drag</title><source>AIP Journals Complete</source><creator>Bradshaw, John L.</creator><creatorcontrib>Bradshaw, John L.</creatorcontrib><description>Two-dimensional coupled nonlinear equations of projectile motion with air resistance in the form of quadratic drag are often treated as inseparable and solvable only numerically. However, when they are recast in terms of the angle between the projectile velocity and the horizontal, they become completely uncoupled and possess analytic solutions for projectile velocities as a function of that angle. The equations relating the time and position coordinates to this angle are not integrable in terms of elementary functions but are easy to integrate numerically. Additionally, energy equations explicitly including dissipation terms can be developed as integrals of the equations of motion. One-dimensional numerical integrations can be treated in a pedagogically straightforward way using numerical analysis software or even within a spreadsheet, making this topic accessible to undergraduates. We present this approach with sample numerical results for velocity components, trajectories, and energy-balance of a baseball-sized projectile.</description><identifier>ISSN: 0002-9505</identifier><identifier>EISSN: 1943-2909</identifier><identifier>DOI: 10.1119/5.0095643</identifier><identifier>CODEN: AJPIAS</identifier><language>eng</language><publisher>Woodbury: American Institute of Physics</publisher><subject>Crop dusting ; Differential equations ; Nonlinear equations ; Numerical analysis ; Velocity</subject><ispartof>American journal of physics, 2023-04, Vol.91 (4), p.258-263</ispartof><rights>Author(s)</rights><rights>Copyright American Institute of Physics Apr 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-5a53b773e3770fcbfd3052cee50b8133e0346a031c4f1437b1c5cd06a2c2d9723</citedby><cites>FETCH-LOGICAL-c327t-5a53b773e3770fcbfd3052cee50b8133e0346a031c4f1437b1c5cd06a2c2d9723</cites><orcidid>0000-0002-4229-2764</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/ajp/article-lookup/doi/10.1119/5.0095643$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Bradshaw, John L.</creatorcontrib><title>Projectile motion with quadratic drag</title><title>American journal of physics</title><description>Two-dimensional coupled nonlinear equations of projectile motion with air resistance in the form of quadratic drag are often treated as inseparable and solvable only numerically. However, when they are recast in terms of the angle between the projectile velocity and the horizontal, they become completely uncoupled and possess analytic solutions for projectile velocities as a function of that angle. The equations relating the time and position coordinates to this angle are not integrable in terms of elementary functions but are easy to integrate numerically. Additionally, energy equations explicitly including dissipation terms can be developed as integrals of the equations of motion. One-dimensional numerical integrations can be treated in a pedagogically straightforward way using numerical analysis software or even within a spreadsheet, making this topic accessible to undergraduates. We present this approach with sample numerical results for velocity components, trajectories, and energy-balance of a baseball-sized projectile.</description><subject>Crop dusting</subject><subject>Differential equations</subject><subject>Nonlinear equations</subject><subject>Numerical analysis</subject><subject>Velocity</subject><issn>0002-9505</issn><issn>1943-2909</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqdkE1LxDAYhIMoWKsH_0FBPCh0fZO3aZqjLOsHLOhBzyFNU23Z3ewmqeK_t0sXvHsaBh5mmCHkksKMUirv-AxA8rLAI5JQWWDOJMhjkgAAyyUHfkrOQuhHK2kFCbl-9a63JnYrm61d7Nwm--7iZ7YbdON17Ew2ysc5OWn1KtiLg6bk_WHxNn_Kly-Pz_P7ZW6QiZhzzbEWAi0KAa2p2waBM2Mth7qiiBawKDUgNUVLCxQ1Ndw0UGpmWCMFw5RcTblb73aDDVH1bvCbsVIxIWkpKjZOS8nNRBnvQvC2VVvfrbX_URTU_gXF1eGFkb2d2GC6qPf7_gd_Of8Hqm3T4i-H4WjG</recordid><startdate>202304</startdate><enddate>202304</enddate><creator>Bradshaw, John L.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4229-2764</orcidid></search><sort><creationdate>202304</creationdate><title>Projectile motion with quadratic drag</title><author>Bradshaw, John L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-5a53b773e3770fcbfd3052cee50b8133e0346a031c4f1437b1c5cd06a2c2d9723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Crop dusting</topic><topic>Differential equations</topic><topic>Nonlinear equations</topic><topic>Numerical analysis</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bradshaw, John L.</creatorcontrib><collection>CrossRef</collection><jtitle>American journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bradshaw, John L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Projectile motion with quadratic drag</atitle><jtitle>American journal of physics</jtitle><date>2023-04</date><risdate>2023</risdate><volume>91</volume><issue>4</issue><spage>258</spage><epage>263</epage><pages>258-263</pages><issn>0002-9505</issn><eissn>1943-2909</eissn><coden>AJPIAS</coden><abstract>Two-dimensional coupled nonlinear equations of projectile motion with air resistance in the form of quadratic drag are often treated as inseparable and solvable only numerically. However, when they are recast in terms of the angle between the projectile velocity and the horizontal, they become completely uncoupled and possess analytic solutions for projectile velocities as a function of that angle. The equations relating the time and position coordinates to this angle are not integrable in terms of elementary functions but are easy to integrate numerically. Additionally, energy equations explicitly including dissipation terms can be developed as integrals of the equations of motion. One-dimensional numerical integrations can be treated in a pedagogically straightforward way using numerical analysis software or even within a spreadsheet, making this topic accessible to undergraduates. We present this approach with sample numerical results for velocity components, trajectories, and energy-balance of a baseball-sized projectile.</abstract><cop>Woodbury</cop><pub>American Institute of Physics</pub><doi>10.1119/5.0095643</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-4229-2764</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-9505
ispartof American journal of physics, 2023-04, Vol.91 (4), p.258-263
issn 0002-9505
1943-2909
language eng
recordid cdi_crossref_primary_10_1119_5_0095643
source AIP Journals Complete
subjects Crop dusting
Differential equations
Nonlinear equations
Numerical analysis
Velocity
title Projectile motion with quadratic drag
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A04%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Projectile%20motion%20with%20quadratic%20drag&rft.jtitle=American%20journal%20of%20physics&rft.au=Bradshaw,%20John%20L.&rft.date=2023-04&rft.volume=91&rft.issue=4&rft.spage=258&rft.epage=263&rft.pages=258-263&rft.issn=0002-9505&rft.eissn=1943-2909&rft.coden=AJPIAS&rft_id=info:doi/10.1119/5.0095643&rft_dat=%3Cproquest_cross%3E2791678264%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2791678264&rft_id=info:pmid/&rfr_iscdi=true