Voronoi cell analysis: The shapes of particle systems

Many physical systems can be studied as collections of particles embedded in space, often evolving in time. Natural questions arise concerning how to characterize these arrangements—are they ordered or disordered? If they are ordered, how are they ordered and what kinds of defects do they possess? V...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of physics 2022-06, Vol.90 (6), p.469-480
Hauptverfasser: Lazar, Emanuel A., Lu, Jiayin, Rycroft, Chris H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 480
container_issue 6
container_start_page 469
container_title American journal of physics
container_volume 90
creator Lazar, Emanuel A.
Lu, Jiayin
Rycroft, Chris H.
description Many physical systems can be studied as collections of particles embedded in space, often evolving in time. Natural questions arise concerning how to characterize these arrangements—are they ordered or disordered? If they are ordered, how are they ordered and what kinds of defects do they possess? Voronoi tessellations, originally introduced to study problems in pure mathematics, have become a powerful and versatile tool for analyzing countless problems in pure and applied physics. We explain the basics of Voronoi tessellations and the shapes that they produce and describe how they can be used to characterize many physical systems.
doi_str_mv 10.1119/5.0087591
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1119_5_0087591</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2669097973</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-3333d97d87ad82ee51b625c23a3e604ffc92036032662b139245e14ac65a78523</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtbqwX-w6Elhaz42ycabFL-g4KV6DWk2S7dsN2smFfbfm7JFD4K5DBke3mEGoUuCZ4QQdcdnGJeSK3KEJkQVLKcKq2M0wRjTXHHMT9EZwCZ9FSnxBPEPH3znm8y6ts1MZ9oBGrjPlmuXwdr0DjJfZ70JsbFtag0Q3RbO0UltWnAXhzpF70-Py_lLvnh7fp0_LHLLShVzll6lZFVKU5XUOU5WgnJLmWFO4KKuraKYCcyoEHRFmKIFd6QwVnAjS07ZFF2NuR5io8E20dm19V3nbNREYSFkkdD1iPrgP3cOot74XUibgE65aX2pJEvqZlQ2eIDgat2HZmvCoAnW-9Nprg-nS_Z2tPuJJja--8FfPvxC3Vf1f_hv8jfzmXl9</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2669097973</pqid></control><display><type>article</type><title>Voronoi cell analysis: The shapes of particle systems</title><source>AIP Journals Complete</source><creator>Lazar, Emanuel A. ; Lu, Jiayin ; Rycroft, Chris H.</creator><creatorcontrib>Lazar, Emanuel A. ; Lu, Jiayin ; Rycroft, Chris H. ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Many physical systems can be studied as collections of particles embedded in space, often evolving in time. Natural questions arise concerning how to characterize these arrangements—are they ordered or disordered? If they are ordered, how are they ordered and what kinds of defects do they possess? Voronoi tessellations, originally introduced to study problems in pure mathematics, have become a powerful and versatile tool for analyzing countless problems in pure and applied physics. We explain the basics of Voronoi tessellations and the shapes that they produce and describe how they can be used to characterize many physical systems.</description><identifier>ISSN: 0002-9505</identifier><identifier>EISSN: 1943-2909</identifier><identifier>DOI: 10.1119/5.0087591</identifier><identifier>CODEN: AJPIAS</identifier><language>eng</language><publisher>Woodbury: American Institute of Physics</publisher><subject>Applied physics ; computational methods ; convex geometry ; crystallographic defects ; disordered solids ; Euclidean geometries ; geometric topology ; granular materials ; ideal gas ; Mathematics teachers ; partial differential equations ; Particle size ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ; Space ; Voronoi diagrams</subject><ispartof>American journal of physics, 2022-06, Vol.90 (6), p.469-480</ispartof><rights>Author(s)</rights><rights>Copyright American Institute of Physics Jun 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-3333d97d87ad82ee51b625c23a3e604ffc92036032662b139245e14ac65a78523</citedby><cites>FETCH-LOGICAL-c389t-3333d97d87ad82ee51b625c23a3e604ffc92036032662b139245e14ac65a78523</cites><orcidid>0000-0003-4677-6990 ; 0000-0002-5552-5299 ; 0000000255525299 ; 0000000346776990</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/ajp/article-lookup/doi/10.1119/5.0087591$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,791,882,4498,27905,27906,76133</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1906674$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lazar, Emanuel A.</creatorcontrib><creatorcontrib>Lu, Jiayin</creatorcontrib><creatorcontrib>Rycroft, Chris H.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Voronoi cell analysis: The shapes of particle systems</title><title>American journal of physics</title><description>Many physical systems can be studied as collections of particles embedded in space, often evolving in time. Natural questions arise concerning how to characterize these arrangements—are they ordered or disordered? If they are ordered, how are they ordered and what kinds of defects do they possess? Voronoi tessellations, originally introduced to study problems in pure mathematics, have become a powerful and versatile tool for analyzing countless problems in pure and applied physics. We explain the basics of Voronoi tessellations and the shapes that they produce and describe how they can be used to characterize many physical systems.</description><subject>Applied physics</subject><subject>computational methods</subject><subject>convex geometry</subject><subject>crystallographic defects</subject><subject>disordered solids</subject><subject>Euclidean geometries</subject><subject>geometric topology</subject><subject>granular materials</subject><subject>ideal gas</subject><subject>Mathematics teachers</subject><subject>partial differential equations</subject><subject>Particle size</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><subject>Space</subject><subject>Voronoi diagrams</subject><issn>0002-9505</issn><issn>1943-2909</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90E1LAzEQBuAgCtbqwX-w6Elhaz42ycabFL-g4KV6DWk2S7dsN2smFfbfm7JFD4K5DBke3mEGoUuCZ4QQdcdnGJeSK3KEJkQVLKcKq2M0wRjTXHHMT9EZwCZ9FSnxBPEPH3znm8y6ts1MZ9oBGrjPlmuXwdr0DjJfZ70JsbFtag0Q3RbO0UltWnAXhzpF70-Py_lLvnh7fp0_LHLLShVzll6lZFVKU5XUOU5WgnJLmWFO4KKuraKYCcyoEHRFmKIFd6QwVnAjS07ZFF2NuR5io8E20dm19V3nbNREYSFkkdD1iPrgP3cOot74XUibgE65aX2pJEvqZlQ2eIDgat2HZmvCoAnW-9Nprg-nS_Z2tPuJJja--8FfPvxC3Vf1f_hv8jfzmXl9</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Lazar, Emanuel A.</creator><creator>Lu, Jiayin</creator><creator>Rycroft, Chris H.</creator><general>American Institute of Physics</general><general>American Association of Physics Teachers (AAPT)</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-4677-6990</orcidid><orcidid>https://orcid.org/0000-0002-5552-5299</orcidid><orcidid>https://orcid.org/0000000255525299</orcidid><orcidid>https://orcid.org/0000000346776990</orcidid></search><sort><creationdate>20220601</creationdate><title>Voronoi cell analysis: The shapes of particle systems</title><author>Lazar, Emanuel A. ; Lu, Jiayin ; Rycroft, Chris H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-3333d97d87ad82ee51b625c23a3e604ffc92036032662b139245e14ac65a78523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applied physics</topic><topic>computational methods</topic><topic>convex geometry</topic><topic>crystallographic defects</topic><topic>disordered solids</topic><topic>Euclidean geometries</topic><topic>geometric topology</topic><topic>granular materials</topic><topic>ideal gas</topic><topic>Mathematics teachers</topic><topic>partial differential equations</topic><topic>Particle size</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><topic>Space</topic><topic>Voronoi diagrams</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lazar, Emanuel A.</creatorcontrib><creatorcontrib>Lu, Jiayin</creatorcontrib><creatorcontrib>Rycroft, Chris H.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>American journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lazar, Emanuel A.</au><au>Lu, Jiayin</au><au>Rycroft, Chris H.</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Voronoi cell analysis: The shapes of particle systems</atitle><jtitle>American journal of physics</jtitle><date>2022-06-01</date><risdate>2022</risdate><volume>90</volume><issue>6</issue><spage>469</spage><epage>480</epage><pages>469-480</pages><issn>0002-9505</issn><eissn>1943-2909</eissn><coden>AJPIAS</coden><abstract>Many physical systems can be studied as collections of particles embedded in space, often evolving in time. Natural questions arise concerning how to characterize these arrangements—are they ordered or disordered? If they are ordered, how are they ordered and what kinds of defects do they possess? Voronoi tessellations, originally introduced to study problems in pure mathematics, have become a powerful and versatile tool for analyzing countless problems in pure and applied physics. We explain the basics of Voronoi tessellations and the shapes that they produce and describe how they can be used to characterize many physical systems.</abstract><cop>Woodbury</cop><pub>American Institute of Physics</pub><doi>10.1119/5.0087591</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4677-6990</orcidid><orcidid>https://orcid.org/0000-0002-5552-5299</orcidid><orcidid>https://orcid.org/0000000255525299</orcidid><orcidid>https://orcid.org/0000000346776990</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9505
ispartof American journal of physics, 2022-06, Vol.90 (6), p.469-480
issn 0002-9505
1943-2909
language eng
recordid cdi_crossref_primary_10_1119_5_0087591
source AIP Journals Complete
subjects Applied physics
computational methods
convex geometry
crystallographic defects
disordered solids
Euclidean geometries
geometric topology
granular materials
ideal gas
Mathematics teachers
partial differential equations
Particle size
PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
Space
Voronoi diagrams
title Voronoi cell analysis: The shapes of particle systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A19%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Voronoi%20cell%20analysis:%20The%20shapes%20of%20particle%20systems&rft.jtitle=American%20journal%20of%20physics&rft.au=Lazar,%20Emanuel%20A.&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2022-06-01&rft.volume=90&rft.issue=6&rft.spage=469&rft.epage=480&rft.pages=469-480&rft.issn=0002-9505&rft.eissn=1943-2909&rft.coden=AJPIAS&rft_id=info:doi/10.1119/5.0087591&rft_dat=%3Cproquest_cross%3E2669097973%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2669097973&rft_id=info:pmid/&rfr_iscdi=true