Voronoi cell analysis: The shapes of particle systems
Many physical systems can be studied as collections of particles embedded in space, often evolving in time. Natural questions arise concerning how to characterize these arrangements—are they ordered or disordered? If they are ordered, how are they ordered and what kinds of defects do they possess? V...
Gespeichert in:
Veröffentlicht in: | American journal of physics 2022-06, Vol.90 (6), p.469-480 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 480 |
---|---|
container_issue | 6 |
container_start_page | 469 |
container_title | American journal of physics |
container_volume | 90 |
creator | Lazar, Emanuel A. Lu, Jiayin Rycroft, Chris H. |
description | Many physical systems can be studied as collections of particles embedded in space, often evolving in time. Natural questions arise concerning how to characterize these arrangements—are they ordered or disordered? If they are ordered, how are they ordered and what kinds of defects do they possess? Voronoi tessellations, originally introduced to study problems in pure mathematics, have become a powerful and versatile tool for analyzing countless problems in pure and applied physics. We explain the basics of Voronoi tessellations and the shapes that they produce and describe how they can be used to characterize many physical systems. |
doi_str_mv | 10.1119/5.0087591 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1119_5_0087591</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2669097973</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-3333d97d87ad82ee51b625c23a3e604ffc92036032662b139245e14ac65a78523</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtbqwX-w6Elhaz42ycabFL-g4KV6DWk2S7dsN2smFfbfm7JFD4K5DBke3mEGoUuCZ4QQdcdnGJeSK3KEJkQVLKcKq2M0wRjTXHHMT9EZwCZ9FSnxBPEPH3znm8y6ts1MZ9oBGrjPlmuXwdr0DjJfZ70JsbFtag0Q3RbO0UltWnAXhzpF70-Py_lLvnh7fp0_LHLLShVzll6lZFVKU5XUOU5WgnJLmWFO4KKuraKYCcyoEHRFmKIFd6QwVnAjS07ZFF2NuR5io8E20dm19V3nbNREYSFkkdD1iPrgP3cOot74XUibgE65aX2pJEvqZlQ2eIDgat2HZmvCoAnW-9Nprg-nS_Z2tPuJJja--8FfPvxC3Vf1f_hv8jfzmXl9</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2669097973</pqid></control><display><type>article</type><title>Voronoi cell analysis: The shapes of particle systems</title><source>AIP Journals Complete</source><creator>Lazar, Emanuel A. ; Lu, Jiayin ; Rycroft, Chris H.</creator><creatorcontrib>Lazar, Emanuel A. ; Lu, Jiayin ; Rycroft, Chris H. ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Many physical systems can be studied as collections of particles embedded in space, often evolving in time. Natural questions arise concerning how to characterize these arrangements—are they ordered or disordered? If they are ordered, how are they ordered and what kinds of defects do they possess? Voronoi tessellations, originally introduced to study problems in pure mathematics, have become a powerful and versatile tool for analyzing countless problems in pure and applied physics. We explain the basics of Voronoi tessellations and the shapes that they produce and describe how they can be used to characterize many physical systems.</description><identifier>ISSN: 0002-9505</identifier><identifier>EISSN: 1943-2909</identifier><identifier>DOI: 10.1119/5.0087591</identifier><identifier>CODEN: AJPIAS</identifier><language>eng</language><publisher>Woodbury: American Institute of Physics</publisher><subject>Applied physics ; computational methods ; convex geometry ; crystallographic defects ; disordered solids ; Euclidean geometries ; geometric topology ; granular materials ; ideal gas ; Mathematics teachers ; partial differential equations ; Particle size ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ; Space ; Voronoi diagrams</subject><ispartof>American journal of physics, 2022-06, Vol.90 (6), p.469-480</ispartof><rights>Author(s)</rights><rights>Copyright American Institute of Physics Jun 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-3333d97d87ad82ee51b625c23a3e604ffc92036032662b139245e14ac65a78523</citedby><cites>FETCH-LOGICAL-c389t-3333d97d87ad82ee51b625c23a3e604ffc92036032662b139245e14ac65a78523</cites><orcidid>0000-0003-4677-6990 ; 0000-0002-5552-5299 ; 0000000255525299 ; 0000000346776990</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/ajp/article-lookup/doi/10.1119/5.0087591$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,791,882,4498,27905,27906,76133</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1906674$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lazar, Emanuel A.</creatorcontrib><creatorcontrib>Lu, Jiayin</creatorcontrib><creatorcontrib>Rycroft, Chris H.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Voronoi cell analysis: The shapes of particle systems</title><title>American journal of physics</title><description>Many physical systems can be studied as collections of particles embedded in space, often evolving in time. Natural questions arise concerning how to characterize these arrangements—are they ordered or disordered? If they are ordered, how are they ordered and what kinds of defects do they possess? Voronoi tessellations, originally introduced to study problems in pure mathematics, have become a powerful and versatile tool for analyzing countless problems in pure and applied physics. We explain the basics of Voronoi tessellations and the shapes that they produce and describe how they can be used to characterize many physical systems.</description><subject>Applied physics</subject><subject>computational methods</subject><subject>convex geometry</subject><subject>crystallographic defects</subject><subject>disordered solids</subject><subject>Euclidean geometries</subject><subject>geometric topology</subject><subject>granular materials</subject><subject>ideal gas</subject><subject>Mathematics teachers</subject><subject>partial differential equations</subject><subject>Particle size</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><subject>Space</subject><subject>Voronoi diagrams</subject><issn>0002-9505</issn><issn>1943-2909</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90E1LAzEQBuAgCtbqwX-w6Elhaz42ycabFL-g4KV6DWk2S7dsN2smFfbfm7JFD4K5DBke3mEGoUuCZ4QQdcdnGJeSK3KEJkQVLKcKq2M0wRjTXHHMT9EZwCZ9FSnxBPEPH3znm8y6ts1MZ9oBGrjPlmuXwdr0DjJfZ70JsbFtag0Q3RbO0UltWnAXhzpF70-Py_lLvnh7fp0_LHLLShVzll6lZFVKU5XUOU5WgnJLmWFO4KKuraKYCcyoEHRFmKIFd6QwVnAjS07ZFF2NuR5io8E20dm19V3nbNREYSFkkdD1iPrgP3cOot74XUibgE65aX2pJEvqZlQ2eIDgat2HZmvCoAnW-9Nprg-nS_Z2tPuJJja--8FfPvxC3Vf1f_hv8jfzmXl9</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Lazar, Emanuel A.</creator><creator>Lu, Jiayin</creator><creator>Rycroft, Chris H.</creator><general>American Institute of Physics</general><general>American Association of Physics Teachers (AAPT)</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-4677-6990</orcidid><orcidid>https://orcid.org/0000-0002-5552-5299</orcidid><orcidid>https://orcid.org/0000000255525299</orcidid><orcidid>https://orcid.org/0000000346776990</orcidid></search><sort><creationdate>20220601</creationdate><title>Voronoi cell analysis: The shapes of particle systems</title><author>Lazar, Emanuel A. ; Lu, Jiayin ; Rycroft, Chris H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-3333d97d87ad82ee51b625c23a3e604ffc92036032662b139245e14ac65a78523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applied physics</topic><topic>computational methods</topic><topic>convex geometry</topic><topic>crystallographic defects</topic><topic>disordered solids</topic><topic>Euclidean geometries</topic><topic>geometric topology</topic><topic>granular materials</topic><topic>ideal gas</topic><topic>Mathematics teachers</topic><topic>partial differential equations</topic><topic>Particle size</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><topic>Space</topic><topic>Voronoi diagrams</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lazar, Emanuel A.</creatorcontrib><creatorcontrib>Lu, Jiayin</creatorcontrib><creatorcontrib>Rycroft, Chris H.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>American journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lazar, Emanuel A.</au><au>Lu, Jiayin</au><au>Rycroft, Chris H.</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Voronoi cell analysis: The shapes of particle systems</atitle><jtitle>American journal of physics</jtitle><date>2022-06-01</date><risdate>2022</risdate><volume>90</volume><issue>6</issue><spage>469</spage><epage>480</epage><pages>469-480</pages><issn>0002-9505</issn><eissn>1943-2909</eissn><coden>AJPIAS</coden><abstract>Many physical systems can be studied as collections of particles embedded in space, often evolving in time. Natural questions arise concerning how to characterize these arrangements—are they ordered or disordered? If they are ordered, how are they ordered and what kinds of defects do they possess? Voronoi tessellations, originally introduced to study problems in pure mathematics, have become a powerful and versatile tool for analyzing countless problems in pure and applied physics. We explain the basics of Voronoi tessellations and the shapes that they produce and describe how they can be used to characterize many physical systems.</abstract><cop>Woodbury</cop><pub>American Institute of Physics</pub><doi>10.1119/5.0087591</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4677-6990</orcidid><orcidid>https://orcid.org/0000-0002-5552-5299</orcidid><orcidid>https://orcid.org/0000000255525299</orcidid><orcidid>https://orcid.org/0000000346776990</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9505 |
ispartof | American journal of physics, 2022-06, Vol.90 (6), p.469-480 |
issn | 0002-9505 1943-2909 |
language | eng |
recordid | cdi_crossref_primary_10_1119_5_0087591 |
source | AIP Journals Complete |
subjects | Applied physics computational methods convex geometry crystallographic defects disordered solids Euclidean geometries geometric topology granular materials ideal gas Mathematics teachers partial differential equations Particle size PHYSICS OF ELEMENTARY PARTICLES AND FIELDS Space Voronoi diagrams |
title | Voronoi cell analysis: The shapes of particle systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A19%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Voronoi%20cell%20analysis:%20The%20shapes%20of%20particle%20systems&rft.jtitle=American%20journal%20of%20physics&rft.au=Lazar,%20Emanuel%20A.&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2022-06-01&rft.volume=90&rft.issue=6&rft.spage=469&rft.epage=480&rft.pages=469-480&rft.issn=0002-9505&rft.eissn=1943-2909&rft.coden=AJPIAS&rft_id=info:doi/10.1119/5.0087591&rft_dat=%3Cproquest_cross%3E2669097973%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2669097973&rft_id=info:pmid/&rfr_iscdi=true |