How Magnus Bends the Flying Ball – Experimenting and Modeling
Students are well aware of the effect of the deflection of sports balls when they have been given a spin. A volleyball, tennis, or table tennis ball served with topspin results in an additional downward force that makes the ball difficult to catch and return. In soccer, the effect of sidespin causes...
Gespeichert in:
Veröffentlicht in: | The Physics teacher 2017-02, Vol.55 (2), p.112-114 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 114 |
---|---|
container_issue | 2 |
container_start_page | 112 |
container_title | The Physics teacher |
container_volume | 55 |
creator | Timková, V. Ješková, Z. |
description | Students are well aware of the effect of the deflection of sports balls when they have been given a spin. A volleyball, tennis, or table tennis ball served with topspin results in an additional downward force that makes the ball difficult to catch and return. In soccer, the effect of sidespin causes the ball to curve unexpectedly sideways, resulting in a so-called banana kick that can confuse the goalkeeper. These surprising effects attract students’ attention such that the motion of sports balls can be used to capture the interest of students towards the physics behind it. However, to study and analyze the motion of a real ball kicked in a playfield is not an easy task. Instead of the large-scale full-size sports ball motion, there can be designed and studied simpler experiments that can be carried out in the classroom. Moreover, digital technologies that are available at schools enable students to collect data from the experiment easily in a reasonable time. The mathematical model based on the analysis of forces acting on the ball flying in the air can be used to simulate the motion in order to understand the basic physical principles of the motion so that the best correspondence may be found. |
doi_str_mv | 10.1119/1.4974126 |
format | Article |
fullrecord | <record><control><sourceid>eric_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1119_1_4974126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ1142782</ericid><sourcerecordid>EJ1142782</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-a3e13d9df9cddefa68cb63fca0bfc0494c5ad766a0785fcad3ed94c14ec1e31e3</originalsourceid><addsrcrecordid>eNp9j81KAzEUhYMoOFYXPoCQrcLU3CTzk5XYMrVKixsFd0OanzoyZspk_OnOd_ANfRJTpuhK4cLlnvNxuAehYyBDABDnMOQi40DTHRSB4Czmgua7KCKEQSwoPOyjA--fCCE8YSJCF9PmDc_l0r14PDJOe9w9Gjyp15Vb4pGsa_z18YmL95Vpq2fjuo0sncbzRps6HIdoz8ram6PtHqD7SXE3nsaz26vr8eUsVoxCF0tmgGmhrVBaGyvTXC1SZpUkC6sIF1wlUmdpKkmWJ0HWzOggAjcKDAszQKd9rmob71tjy1V4SLbrEki5aV5CuW0e2JOeDT-rH664AeA0y2nwz3rfq6qTXdW4f8P-hF-b9hcsV9qyb3RNcg8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>How Magnus Bends the Flying Ball – Experimenting and Modeling</title><source>AIP Journals Complete</source><creator>Timková, V. ; Ješková, Z.</creator><creatorcontrib>Timková, V. ; Ješková, Z.</creatorcontrib><description>Students are well aware of the effect of the deflection of sports balls when they have been given a spin. A volleyball, tennis, or table tennis ball served with topspin results in an additional downward force that makes the ball difficult to catch and return. In soccer, the effect of sidespin causes the ball to curve unexpectedly sideways, resulting in a so-called banana kick that can confuse the goalkeeper. These surprising effects attract students’ attention such that the motion of sports balls can be used to capture the interest of students towards the physics behind it. However, to study and analyze the motion of a real ball kicked in a playfield is not an easy task. Instead of the large-scale full-size sports ball motion, there can be designed and studied simpler experiments that can be carried out in the classroom. Moreover, digital technologies that are available at schools enable students to collect data from the experiment easily in a reasonable time. The mathematical model based on the analysis of forces acting on the ball flying in the air can be used to simulate the motion in order to understand the basic physical principles of the motion so that the best correspondence may be found.</description><identifier>ISSN: 0031-921X</identifier><identifier>EISSN: 1943-4928</identifier><identifier>DOI: 10.1119/1.4974126</identifier><identifier>CODEN: PHTEAH</identifier><language>eng</language><publisher>American Association of Physics Teachers</publisher><subject>Educational Technology ; Mathematical Models ; Motion ; Physics ; Science Experiments ; Science Instruction ; Scientific Principles ; Simulation ; Technology Uses in Education ; Toys</subject><ispartof>The Physics teacher, 2017-02, Vol.55 (2), p.112-114</ispartof><rights>American Association of Physics Teachers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-a3e13d9df9cddefa68cb63fca0bfc0494c5ad766a0785fcad3ed94c14ec1e31e3</citedby><cites>FETCH-LOGICAL-c321t-a3e13d9df9cddefa68cb63fca0bfc0494c5ad766a0785fcad3ed94c14ec1e31e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pte/article-lookup/doi/10.1119/1.4974126$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76353</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ1142782$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>Timková, V.</creatorcontrib><creatorcontrib>Ješková, Z.</creatorcontrib><title>How Magnus Bends the Flying Ball – Experimenting and Modeling</title><title>The Physics teacher</title><description>Students are well aware of the effect of the deflection of sports balls when they have been given a spin. A volleyball, tennis, or table tennis ball served with topspin results in an additional downward force that makes the ball difficult to catch and return. In soccer, the effect of sidespin causes the ball to curve unexpectedly sideways, resulting in a so-called banana kick that can confuse the goalkeeper. These surprising effects attract students’ attention such that the motion of sports balls can be used to capture the interest of students towards the physics behind it. However, to study and analyze the motion of a real ball kicked in a playfield is not an easy task. Instead of the large-scale full-size sports ball motion, there can be designed and studied simpler experiments that can be carried out in the classroom. Moreover, digital technologies that are available at schools enable students to collect data from the experiment easily in a reasonable time. The mathematical model based on the analysis of forces acting on the ball flying in the air can be used to simulate the motion in order to understand the basic physical principles of the motion so that the best correspondence may be found.</description><subject>Educational Technology</subject><subject>Mathematical Models</subject><subject>Motion</subject><subject>Physics</subject><subject>Science Experiments</subject><subject>Science Instruction</subject><subject>Scientific Principles</subject><subject>Simulation</subject><subject>Technology Uses in Education</subject><subject>Toys</subject><issn>0031-921X</issn><issn>1943-4928</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9j81KAzEUhYMoOFYXPoCQrcLU3CTzk5XYMrVKixsFd0OanzoyZspk_OnOd_ANfRJTpuhK4cLlnvNxuAehYyBDABDnMOQi40DTHRSB4Czmgua7KCKEQSwoPOyjA--fCCE8YSJCF9PmDc_l0r14PDJOe9w9Gjyp15Vb4pGsa_z18YmL95Vpq2fjuo0sncbzRps6HIdoz8ram6PtHqD7SXE3nsaz26vr8eUsVoxCF0tmgGmhrVBaGyvTXC1SZpUkC6sIF1wlUmdpKkmWJ0HWzOggAjcKDAszQKd9rmob71tjy1V4SLbrEki5aV5CuW0e2JOeDT-rH664AeA0y2nwz3rfq6qTXdW4f8P-hF-b9hcsV9qyb3RNcg8</recordid><startdate>201702</startdate><enddate>201702</enddate><creator>Timková, V.</creator><creator>Ješková, Z.</creator><general>American Association of Physics Teachers</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201702</creationdate><title>How Magnus Bends the Flying Ball – Experimenting and Modeling</title><author>Timková, V. ; Ješková, Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-a3e13d9df9cddefa68cb63fca0bfc0494c5ad766a0785fcad3ed94c14ec1e31e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Educational Technology</topic><topic>Mathematical Models</topic><topic>Motion</topic><topic>Physics</topic><topic>Science Experiments</topic><topic>Science Instruction</topic><topic>Scientific Principles</topic><topic>Simulation</topic><topic>Technology Uses in Education</topic><topic>Toys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Timková, V.</creatorcontrib><creatorcontrib>Ješková, Z.</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>CrossRef</collection><jtitle>The Physics teacher</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Timková, V.</au><au>Ješková, Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ1142782</ericid><atitle>How Magnus Bends the Flying Ball – Experimenting and Modeling</atitle><jtitle>The Physics teacher</jtitle><date>2017-02</date><risdate>2017</risdate><volume>55</volume><issue>2</issue><spage>112</spage><epage>114</epage><pages>112-114</pages><issn>0031-921X</issn><eissn>1943-4928</eissn><coden>PHTEAH</coden><abstract>Students are well aware of the effect of the deflection of sports balls when they have been given a spin. A volleyball, tennis, or table tennis ball served with topspin results in an additional downward force that makes the ball difficult to catch and return. In soccer, the effect of sidespin causes the ball to curve unexpectedly sideways, resulting in a so-called banana kick that can confuse the goalkeeper. These surprising effects attract students’ attention such that the motion of sports balls can be used to capture the interest of students towards the physics behind it. However, to study and analyze the motion of a real ball kicked in a playfield is not an easy task. Instead of the large-scale full-size sports ball motion, there can be designed and studied simpler experiments that can be carried out in the classroom. Moreover, digital technologies that are available at schools enable students to collect data from the experiment easily in a reasonable time. The mathematical model based on the analysis of forces acting on the ball flying in the air can be used to simulate the motion in order to understand the basic physical principles of the motion so that the best correspondence may be found.</abstract><pub>American Association of Physics Teachers</pub><doi>10.1119/1.4974126</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-921X |
ispartof | The Physics teacher, 2017-02, Vol.55 (2), p.112-114 |
issn | 0031-921X 1943-4928 |
language | eng |
recordid | cdi_crossref_primary_10_1119_1_4974126 |
source | AIP Journals Complete |
subjects | Educational Technology Mathematical Models Motion Physics Science Experiments Science Instruction Scientific Principles Simulation Technology Uses in Education Toys |
title | How Magnus Bends the Flying Ball – Experimenting and Modeling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T22%3A44%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-eric_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20Magnus%20Bends%20the%20Flying%20Ball%20%E2%80%93%20Experimenting%20and%20Modeling&rft.jtitle=The%20Physics%20teacher&rft.au=Timkov%C3%A1,%20V.&rft.date=2017-02&rft.volume=55&rft.issue=2&rft.spage=112&rft.epage=114&rft.pages=112-114&rft.issn=0031-921X&rft.eissn=1943-4928&rft.coden=PHTEAH&rft_id=info:doi/10.1119/1.4974126&rft_dat=%3Ceric_cross%3EEJ1142782%3C/eric_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ericid=EJ1142782&rfr_iscdi=true |