How Much Does a Half-Kilogram of Water "Weigh"?
Many educators have utilized the phenomenon of the so-called "hydrostatic paradox" to actively engage students in classroom instructional activities related to hydrostatic equilibrium. Various approaches requiring different levels of mathematical knowledge have been proposed in the literat...
Gespeichert in:
Veröffentlicht in: | The Physics teacher 2015-03, Vol.53 (3), p.174-176 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 176 |
---|---|
container_issue | 3 |
container_start_page | 174 |
container_title | The Physics teacher |
container_volume | 53 |
creator | Koumaras, Panagiotis Pierratos, Theodoros |
description | Many educators have utilized the phenomenon of the so-called "hydrostatic paradox" to actively engage students in classroom instructional activities related to hydrostatic equilibrium. Various approaches requiring different levels of mathematical knowledge have been proposed in the literature to provide students clear explanations of this paradox. However, these attempts take for granted that students have already been taught and have internalized the concepts of force and pressure. The hydrostatic paradox is then usually introduced as an application problem for the evaluation of the knowledge acquired. |
doi_str_mv | 10.1119/1.4908089 |
format | Article |
fullrecord | <record><control><sourceid>eric_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1119_1_4908089</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ1056953</ericid><sourcerecordid>EJ1056953</sourcerecordid><originalsourceid>FETCH-LOGICAL-c251t-8d78b619fd7c43e5a1c5d346c0e364967540b219973db2b50ec15e5c5a29a95f3</originalsourceid><addsrcrecordid>eNo9z01Lw0AUheFBFIzVhT9AGLpzMe2985HkrkRqNWrFjVJ3YTKZaSMpkZmK-O9VWlydzcOBl7FzhAki0hQnmqCEkg5YhqSV0CTLQ5YBKBQk8e2YnaT0DgDaKMrYtBq--NOnW_ObwSdueWX7IB67flhFu-FD4Eu79ZGPl75brcdXp-wo2D75s_2O2Ovt_GVWicXz3f3seiGcNLgVZVuUTY4U2sJp5Y1FZ1qlcwde5ZrywmhoJBIVqm1kY8A7NN44YyVZMkGN2OXu18UhpehD_RG7jY3fNUL9V1pjvS_9tRc762Pn_t38AcHkZJT6AdkZS7o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>How Much Does a Half-Kilogram of Water "Weigh"?</title><source>AIP Journals Complete</source><creator>Koumaras, Panagiotis ; Pierratos, Theodoros</creator><creatorcontrib>Koumaras, Panagiotis ; Pierratos, Theodoros</creatorcontrib><description>Many educators have utilized the phenomenon of the so-called "hydrostatic paradox" to actively engage students in classroom instructional activities related to hydrostatic equilibrium. Various approaches requiring different levels of mathematical knowledge have been proposed in the literature to provide students clear explanations of this paradox. However, these attempts take for granted that students have already been taught and have internalized the concepts of force and pressure. The hydrostatic paradox is then usually introduced as an application problem for the evaluation of the knowledge acquired.</description><identifier>ISSN: 0031-921X</identifier><identifier>EISSN: 1943-4928</identifier><identifier>DOI: 10.1119/1.4908089</identifier><language>eng</language><publisher>American Association of Physics Teachers</publisher><subject>Knowledge Level ; Measurement ; Physics ; Science Activities ; Science Instruction ; Scientific Concepts ; Water</subject><ispartof>The Physics teacher, 2015-03, Vol.53 (3), p.174-176</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c251t-8d78b619fd7c43e5a1c5d346c0e364967540b219973db2b50ec15e5c5a29a95f3</citedby><cites>FETCH-LOGICAL-c251t-8d78b619fd7c43e5a1c5d346c0e364967540b219973db2b50ec15e5c5a29a95f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ1056953$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>Koumaras, Panagiotis</creatorcontrib><creatorcontrib>Pierratos, Theodoros</creatorcontrib><title>How Much Does a Half-Kilogram of Water "Weigh"?</title><title>The Physics teacher</title><description>Many educators have utilized the phenomenon of the so-called "hydrostatic paradox" to actively engage students in classroom instructional activities related to hydrostatic equilibrium. Various approaches requiring different levels of mathematical knowledge have been proposed in the literature to provide students clear explanations of this paradox. However, these attempts take for granted that students have already been taught and have internalized the concepts of force and pressure. The hydrostatic paradox is then usually introduced as an application problem for the evaluation of the knowledge acquired.</description><subject>Knowledge Level</subject><subject>Measurement</subject><subject>Physics</subject><subject>Science Activities</subject><subject>Science Instruction</subject><subject>Scientific Concepts</subject><subject>Water</subject><issn>0031-921X</issn><issn>1943-4928</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9z01Lw0AUheFBFIzVhT9AGLpzMe2985HkrkRqNWrFjVJ3YTKZaSMpkZmK-O9VWlydzcOBl7FzhAki0hQnmqCEkg5YhqSV0CTLQ5YBKBQk8e2YnaT0DgDaKMrYtBq--NOnW_ObwSdueWX7IB67flhFu-FD4Eu79ZGPl75brcdXp-wo2D75s_2O2Ovt_GVWicXz3f3seiGcNLgVZVuUTY4U2sJp5Y1FZ1qlcwde5ZrywmhoJBIVqm1kY8A7NN44YyVZMkGN2OXu18UhpehD_RG7jY3fNUL9V1pjvS_9tRc762Pn_t38AcHkZJT6AdkZS7o</recordid><startdate>201503</startdate><enddate>201503</enddate><creator>Koumaras, Panagiotis</creator><creator>Pierratos, Theodoros</creator><general>American Association of Physics Teachers</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201503</creationdate><title>How Much Does a Half-Kilogram of Water "Weigh"?</title><author>Koumaras, Panagiotis ; Pierratos, Theodoros</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c251t-8d78b619fd7c43e5a1c5d346c0e364967540b219973db2b50ec15e5c5a29a95f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Knowledge Level</topic><topic>Measurement</topic><topic>Physics</topic><topic>Science Activities</topic><topic>Science Instruction</topic><topic>Scientific Concepts</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koumaras, Panagiotis</creatorcontrib><creatorcontrib>Pierratos, Theodoros</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>CrossRef</collection><jtitle>The Physics teacher</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koumaras, Panagiotis</au><au>Pierratos, Theodoros</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ1056953</ericid><atitle>How Much Does a Half-Kilogram of Water "Weigh"?</atitle><jtitle>The Physics teacher</jtitle><date>2015-03</date><risdate>2015</risdate><volume>53</volume><issue>3</issue><spage>174</spage><epage>176</epage><pages>174-176</pages><issn>0031-921X</issn><eissn>1943-4928</eissn><abstract>Many educators have utilized the phenomenon of the so-called "hydrostatic paradox" to actively engage students in classroom instructional activities related to hydrostatic equilibrium. Various approaches requiring different levels of mathematical knowledge have been proposed in the literature to provide students clear explanations of this paradox. However, these attempts take for granted that students have already been taught and have internalized the concepts of force and pressure. The hydrostatic paradox is then usually introduced as an application problem for the evaluation of the knowledge acquired.</abstract><pub>American Association of Physics Teachers</pub><doi>10.1119/1.4908089</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-921X |
ispartof | The Physics teacher, 2015-03, Vol.53 (3), p.174-176 |
issn | 0031-921X 1943-4928 |
language | eng |
recordid | cdi_crossref_primary_10_1119_1_4908089 |
source | AIP Journals Complete |
subjects | Knowledge Level Measurement Physics Science Activities Science Instruction Scientific Concepts Water |
title | How Much Does a Half-Kilogram of Water "Weigh"? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T20%3A07%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-eric_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20Much%20Does%20a%20Half-Kilogram%20of%20Water%20%22Weigh%22?&rft.jtitle=The%20Physics%20teacher&rft.au=Koumaras,%20Panagiotis&rft.date=2015-03&rft.volume=53&rft.issue=3&rft.spage=174&rft.epage=176&rft.pages=174-176&rft.issn=0031-921X&rft.eissn=1943-4928&rft_id=info:doi/10.1119/1.4908089&rft_dat=%3Ceric_cross%3EEJ1056953%3C/eric_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ericid=EJ1056953&rfr_iscdi=true |