Optical Path, Phase, and Interference

A powerful tool in wave optics is the concept of optical path length, a notion usually introduced with Fermat's principle.1–3 The analysis of Fermat's principle requires the application of the calculus of variations and the concept of an extremum, ideas too advanced for beginning students....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Physics teacher 2005-11, Vol.43 (8), p.496-498
1. Verfasser: Newburgh, Ronald
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 498
container_issue 8
container_start_page 496
container_title The Physics teacher
container_volume 43
creator Newburgh, Ronald
description A powerful tool in wave optics is the concept of optical path length, a notion usually introduced with Fermat's principle.1–3 The analysis of Fermat's principle requires the application of the calculus of variations and the concept of an extremum, ideas too advanced for beginning students. However, the concept has proven its usefulness in the analysis4 of interference experiments such as those of Michelson and Fabry-Perot. In this paper we shall show how optical path length can aid in the analysis of a modified two-slit Young experiment.
doi_str_mv 10.1119/1.2120373
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1119_1_2120373</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>pte</sourcerecordid><originalsourceid>FETCH-LOGICAL-c214t-b0d7092dc5f594ff49965a3c6a72259e7ea95c57d8d3e88f4ed5da4851520e053</originalsourceid><addsrcrecordid>eNp9z01LAzEUheEgCo7Vhf9gNi6UTr03H53JUoraQqFdKLgLMbmhI3VmSILgv1dp0YXQ1dk8HHgZu0SYIKK-xQlHDqIWR6xALUUlNW-OWQEgsNIcX07ZWUpvACCV0AW7Wg25dXZbrm3ejMv1xiYal7bz5aLLFANF6hyds5Ngt4ku9jtizw_3T7N5tVw9LmZ3y8pxlLl6BV-D5t6poLQMQWo9VVa4qa05V5pqslo5VfvGC2qaIMkrb2WjUHEgUGLErne_LvYpRQpmiO27jZ8Gwfz0GTT7vm97s7PJtdnmtu9-8Ucf_6AZfDiE_z9_ATo0XDA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optical Path, Phase, and Interference</title><source>AIP Journals Complete</source><creator>Newburgh, Ronald</creator><creatorcontrib>Newburgh, Ronald</creatorcontrib><description>A powerful tool in wave optics is the concept of optical path length, a notion usually introduced with Fermat's principle.1–3 The analysis of Fermat's principle requires the application of the calculus of variations and the concept of an extremum, ideas too advanced for beginning students. However, the concept has proven its usefulness in the analysis4 of interference experiments such as those of Michelson and Fabry-Perot. In this paper we shall show how optical path length can aid in the analysis of a modified two-slit Young experiment.</description><identifier>ISSN: 0031-921X</identifier><identifier>EISSN: 1943-4928</identifier><identifier>DOI: 10.1119/1.2120373</identifier><identifier>CODEN: PHTEAH</identifier><language>eng</language><ispartof>The Physics teacher, 2005-11, Vol.43 (8), p.496-498</ispartof><rights>American Association of Physics Teachers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c214t-b0d7092dc5f594ff49965a3c6a72259e7ea95c57d8d3e88f4ed5da4851520e053</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pte/article-lookup/doi/10.1119/1.2120373$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76126</link.rule.ids></links><search><creatorcontrib>Newburgh, Ronald</creatorcontrib><title>Optical Path, Phase, and Interference</title><title>The Physics teacher</title><description>A powerful tool in wave optics is the concept of optical path length, a notion usually introduced with Fermat's principle.1–3 The analysis of Fermat's principle requires the application of the calculus of variations and the concept of an extremum, ideas too advanced for beginning students. However, the concept has proven its usefulness in the analysis4 of interference experiments such as those of Michelson and Fabry-Perot. In this paper we shall show how optical path length can aid in the analysis of a modified two-slit Young experiment.</description><issn>0031-921X</issn><issn>1943-4928</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9z01LAzEUheEgCo7Vhf9gNi6UTr03H53JUoraQqFdKLgLMbmhI3VmSILgv1dp0YXQ1dk8HHgZu0SYIKK-xQlHDqIWR6xALUUlNW-OWQEgsNIcX07ZWUpvACCV0AW7Wg25dXZbrm3ejMv1xiYal7bz5aLLFANF6hyds5Ngt4ku9jtizw_3T7N5tVw9LmZ3y8pxlLl6BV-D5t6poLQMQWo9VVa4qa05V5pqslo5VfvGC2qaIMkrb2WjUHEgUGLErne_LvYpRQpmiO27jZ8Gwfz0GTT7vm97s7PJtdnmtu9-8Ucf_6AZfDiE_z9_ATo0XDA</recordid><startdate>200511</startdate><enddate>200511</enddate><creator>Newburgh, Ronald</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200511</creationdate><title>Optical Path, Phase, and Interference</title><author>Newburgh, Ronald</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c214t-b0d7092dc5f594ff49965a3c6a72259e7ea95c57d8d3e88f4ed5da4851520e053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Newburgh, Ronald</creatorcontrib><collection>CrossRef</collection><jtitle>The Physics teacher</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Newburgh, Ronald</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optical Path, Phase, and Interference</atitle><jtitle>The Physics teacher</jtitle><date>2005-11</date><risdate>2005</risdate><volume>43</volume><issue>8</issue><spage>496</spage><epage>498</epage><pages>496-498</pages><issn>0031-921X</issn><eissn>1943-4928</eissn><coden>PHTEAH</coden><abstract>A powerful tool in wave optics is the concept of optical path length, a notion usually introduced with Fermat's principle.1–3 The analysis of Fermat's principle requires the application of the calculus of variations and the concept of an extremum, ideas too advanced for beginning students. However, the concept has proven its usefulness in the analysis4 of interference experiments such as those of Michelson and Fabry-Perot. In this paper we shall show how optical path length can aid in the analysis of a modified two-slit Young experiment.</abstract><doi>10.1119/1.2120373</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-921X
ispartof The Physics teacher, 2005-11, Vol.43 (8), p.496-498
issn 0031-921X
1943-4928
language eng
recordid cdi_crossref_primary_10_1119_1_2120373
source AIP Journals Complete
title Optical Path, Phase, and Interference
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T04%3A38%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optical%20Path,%20Phase,%20and%20Interference&rft.jtitle=The%20Physics%20teacher&rft.au=Newburgh,%20Ronald&rft.date=2005-11&rft.volume=43&rft.issue=8&rft.spage=496&rft.epage=498&rft.pages=496-498&rft.issn=0031-921X&rft.eissn=1943-4928&rft.coden=PHTEAH&rft_id=info:doi/10.1119/1.2120373&rft_dat=%3Cscitation_cross%3Epte%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true