Sci—Sat AM: Brachy — 11: Improving treatment planning for I‐125 lung brachytherapy using Monte Carlo methods

125I brachytherapy used in conjunction with sublobar resection to treat stage I non‐small cell lung cancer has been reported to improve disease‐free and overall survival rates compared with resection alone. Treatments are planned intra‐operatively using seed spacing nomograms or tables to achieve a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical physics (Lancaster) 2012-07, Vol.39 (7), p.4646-4647
Hauptverfasser: Sutherland, JGH, Furutani, KM, Thomson, RM
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4647
container_issue 7
container_start_page 4646
container_title Medical physics (Lancaster)
container_volume 39
creator Sutherland, JGH
Furutani, KM
Thomson, RM
description 125I brachytherapy used in conjunction with sublobar resection to treat stage I non‐small cell lung cancer has been reported to improve disease‐free and overall survival rates compared with resection alone. Treatments are planned intra‐operatively using seed spacing nomograms or tables to achieve a prescription dose defined 5 mm above the implant plane. Dose distributions for patients treated with this technique at the Mayo Clinic Rochester were reanalyzed using a Monte Carlo (MC) calculation; significant differences were observed between the standard TG‐43 dose calculations and the actual dose delivered as determined by MC. This work investigates differences between TG‐43 calculated prescription doses and those calculated in more accurate models. Monte Carlo calculations are performed using the EGSnrc user‐code BrachyDose with a number of lung tissue phantom models including patient CT‐derived phantoms. Seed spacing nomograms using these models are recalculated by determining the dose to the prescription point using the activities per seed required to produce a prescription dose of 100 Gy with the TG‐43 point source formalism. Models using nominal density lung or CT‐derived density lung tissue result in a significant increase in dose to the prescription point (up to approximately 25%) compared to TG‐43 calculated doses. The differences observed suggest that patients routinely receive significantly higher doses than planned using TG‐43 derived nomograms. Additionally, deviation from TG‐43 increases as seed spacing increases. Media heterogeneities significantly affect dose distributions and prescription doses for 125I lung brachytherapy, underlining the importance of using model‐based dose calculation algorithms to plan and analyze these treatments.
doi_str_mv 10.1118/1.4740218
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1118_1_4740218</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1900127281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3088-8e7312ad7c99973a1ca5c1d2b7c5e0d554187729673b843989fffd856984254c3</originalsourceid><addsrcrecordid>eNp90NFO2zAUBmBrAo3S7WIvgHzJkNL5OHZscwcVg0pUm8R2HbmOQ4OSONgOU-94BC72hDwJKS1oEmJXln5959fxQegLkAkAyG8wYYIRCvIDGlEm0oRRonbQiBDFEsoI30P7IdwQQrKUk49oj0oOWcbpCPkrUz3e_73SEZ_Mj_Gp12a5wkOCAY7xrOm8u6vaaxy91bGxbcRdrdt2HZXO49nj_QNQjut-CBbPw3Fpve5WuA9rNHdttHiqfe1wY-PSFeET2i11Hezn7TtGv7-f_ZpeJJc_zmfTk8vEpETKRFqRAtWFMEopkWowmhso6EIYbknBOQMpBFWZSBeSpUqqsiwLyTMlGeXMpGN0uOkd_nDb2xDzpgrG1sP-1vUhB0UIUEElDPTrhhrvQvC2zDtfNdqvciD5-sQ55NsTD_ZgW9svGlu8ypebDiDZgD9VbVfvN-Xzn9vCo40Ppoo6Vq59nblz_h_fFeX_8NtVnwCnB6Ar</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1900127281</pqid></control><display><type>article</type><title>Sci—Sat AM: Brachy — 11: Improving treatment planning for I‐125 lung brachytherapy using Monte Carlo methods</title><source>Wiley Online Library All Journals</source><source>Alma/SFX Local Collection</source><creator>Sutherland, JGH ; Furutani, KM ; Thomson, RM</creator><creatorcontrib>Sutherland, JGH ; Furutani, KM ; Thomson, RM</creatorcontrib><description>125I brachytherapy used in conjunction with sublobar resection to treat stage I non‐small cell lung cancer has been reported to improve disease‐free and overall survival rates compared with resection alone. Treatments are planned intra‐operatively using seed spacing nomograms or tables to achieve a prescription dose defined 5 mm above the implant plane. Dose distributions for patients treated with this technique at the Mayo Clinic Rochester were reanalyzed using a Monte Carlo (MC) calculation; significant differences were observed between the standard TG‐43 dose calculations and the actual dose delivered as determined by MC. This work investigates differences between TG‐43 calculated prescription doses and those calculated in more accurate models. Monte Carlo calculations are performed using the EGSnrc user‐code BrachyDose with a number of lung tissue phantom models including patient CT‐derived phantoms. Seed spacing nomograms using these models are recalculated by determining the dose to the prescription point using the activities per seed required to produce a prescription dose of 100 Gy with the TG‐43 point source formalism. Models using nominal density lung or CT‐derived density lung tissue result in a significant increase in dose to the prescription point (up to approximately 25%) compared to TG‐43 calculated doses. The differences observed suggest that patients routinely receive significantly higher doses than planned using TG‐43 derived nomograms. Additionally, deviation from TG‐43 increases as seed spacing increases. Media heterogeneities significantly affect dose distributions and prescription doses for 125I lung brachytherapy, underlining the importance of using model‐based dose calculation algorithms to plan and analyze these treatments.</description><identifier>ISSN: 0094-2405</identifier><identifier>EISSN: 2473-4209</identifier><identifier>DOI: 10.1118/1.4740218</identifier><identifier>PMID: 28516652</identifier><identifier>CODEN: MPHYA6</identifier><language>eng</language><publisher>United States: American Association of Physicists in Medicine</publisher><subject>Brachytherapy ; Cancer ; Dosimetry ; Lungs ; Medical treatment planning ; Monte Carlo methods ; Numerical modeling ; Therapeutics ; Tissues</subject><ispartof>Medical physics (Lancaster), 2012-07, Vol.39 (7), p.4646-4647</ispartof><rights>American Association of Physicists in Medicine</rights><rights>2012 American Association of Physicists in Medicine</rights><rights>2012 American Association of Physicists in Medicine.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3088-8e7312ad7c99973a1ca5c1d2b7c5e0d554187729673b843989fffd856984254c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1118%2F1.4740218$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1118%2F1.4740218$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28516652$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sutherland, JGH</creatorcontrib><creatorcontrib>Furutani, KM</creatorcontrib><creatorcontrib>Thomson, RM</creatorcontrib><title>Sci—Sat AM: Brachy — 11: Improving treatment planning for I‐125 lung brachytherapy using Monte Carlo methods</title><title>Medical physics (Lancaster)</title><addtitle>Med Phys</addtitle><description>125I brachytherapy used in conjunction with sublobar resection to treat stage I non‐small cell lung cancer has been reported to improve disease‐free and overall survival rates compared with resection alone. Treatments are planned intra‐operatively using seed spacing nomograms or tables to achieve a prescription dose defined 5 mm above the implant plane. Dose distributions for patients treated with this technique at the Mayo Clinic Rochester were reanalyzed using a Monte Carlo (MC) calculation; significant differences were observed between the standard TG‐43 dose calculations and the actual dose delivered as determined by MC. This work investigates differences between TG‐43 calculated prescription doses and those calculated in more accurate models. Monte Carlo calculations are performed using the EGSnrc user‐code BrachyDose with a number of lung tissue phantom models including patient CT‐derived phantoms. Seed spacing nomograms using these models are recalculated by determining the dose to the prescription point using the activities per seed required to produce a prescription dose of 100 Gy with the TG‐43 point source formalism. Models using nominal density lung or CT‐derived density lung tissue result in a significant increase in dose to the prescription point (up to approximately 25%) compared to TG‐43 calculated doses. The differences observed suggest that patients routinely receive significantly higher doses than planned using TG‐43 derived nomograms. Additionally, deviation from TG‐43 increases as seed spacing increases. Media heterogeneities significantly affect dose distributions and prescription doses for 125I lung brachytherapy, underlining the importance of using model‐based dose calculation algorithms to plan and analyze these treatments.</description><subject>Brachytherapy</subject><subject>Cancer</subject><subject>Dosimetry</subject><subject>Lungs</subject><subject>Medical treatment planning</subject><subject>Monte Carlo methods</subject><subject>Numerical modeling</subject><subject>Therapeutics</subject><subject>Tissues</subject><issn>0094-2405</issn><issn>2473-4209</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp90NFO2zAUBmBrAo3S7WIvgHzJkNL5OHZscwcVg0pUm8R2HbmOQ4OSONgOU-94BC72hDwJKS1oEmJXln5959fxQegLkAkAyG8wYYIRCvIDGlEm0oRRonbQiBDFEsoI30P7IdwQQrKUk49oj0oOWcbpCPkrUz3e_73SEZ_Mj_Gp12a5wkOCAY7xrOm8u6vaaxy91bGxbcRdrdt2HZXO49nj_QNQjut-CBbPw3Fpve5WuA9rNHdttHiqfe1wY-PSFeET2i11Hezn7TtGv7-f_ZpeJJc_zmfTk8vEpETKRFqRAtWFMEopkWowmhso6EIYbknBOQMpBFWZSBeSpUqqsiwLyTMlGeXMpGN0uOkd_nDb2xDzpgrG1sP-1vUhB0UIUEElDPTrhhrvQvC2zDtfNdqvciD5-sQ55NsTD_ZgW9svGlu8ypebDiDZgD9VbVfvN-Xzn9vCo40Ppoo6Vq59nblz_h_fFeX_8NtVnwCnB6Ar</recordid><startdate>201207</startdate><enddate>201207</enddate><creator>Sutherland, JGH</creator><creator>Furutani, KM</creator><creator>Thomson, RM</creator><general>American Association of Physicists in Medicine</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201207</creationdate><title>Sci—Sat AM: Brachy — 11: Improving treatment planning for I‐125 lung brachytherapy using Monte Carlo methods</title><author>Sutherland, JGH ; Furutani, KM ; Thomson, RM</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3088-8e7312ad7c99973a1ca5c1d2b7c5e0d554187729673b843989fffd856984254c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Brachytherapy</topic><topic>Cancer</topic><topic>Dosimetry</topic><topic>Lungs</topic><topic>Medical treatment planning</topic><topic>Monte Carlo methods</topic><topic>Numerical modeling</topic><topic>Therapeutics</topic><topic>Tissues</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sutherland, JGH</creatorcontrib><creatorcontrib>Furutani, KM</creatorcontrib><creatorcontrib>Thomson, RM</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Medical physics (Lancaster)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sutherland, JGH</au><au>Furutani, KM</au><au>Thomson, RM</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sci—Sat AM: Brachy — 11: Improving treatment planning for I‐125 lung brachytherapy using Monte Carlo methods</atitle><jtitle>Medical physics (Lancaster)</jtitle><addtitle>Med Phys</addtitle><date>2012-07</date><risdate>2012</risdate><volume>39</volume><issue>7</issue><spage>4646</spage><epage>4647</epage><pages>4646-4647</pages><issn>0094-2405</issn><eissn>2473-4209</eissn><coden>MPHYA6</coden><abstract>125I brachytherapy used in conjunction with sublobar resection to treat stage I non‐small cell lung cancer has been reported to improve disease‐free and overall survival rates compared with resection alone. Treatments are planned intra‐operatively using seed spacing nomograms or tables to achieve a prescription dose defined 5 mm above the implant plane. Dose distributions for patients treated with this technique at the Mayo Clinic Rochester were reanalyzed using a Monte Carlo (MC) calculation; significant differences were observed between the standard TG‐43 dose calculations and the actual dose delivered as determined by MC. This work investigates differences between TG‐43 calculated prescription doses and those calculated in more accurate models. Monte Carlo calculations are performed using the EGSnrc user‐code BrachyDose with a number of lung tissue phantom models including patient CT‐derived phantoms. Seed spacing nomograms using these models are recalculated by determining the dose to the prescription point using the activities per seed required to produce a prescription dose of 100 Gy with the TG‐43 point source formalism. Models using nominal density lung or CT‐derived density lung tissue result in a significant increase in dose to the prescription point (up to approximately 25%) compared to TG‐43 calculated doses. The differences observed suggest that patients routinely receive significantly higher doses than planned using TG‐43 derived nomograms. Additionally, deviation from TG‐43 increases as seed spacing increases. Media heterogeneities significantly affect dose distributions and prescription doses for 125I lung brachytherapy, underlining the importance of using model‐based dose calculation algorithms to plan and analyze these treatments.</abstract><cop>United States</cop><pub>American Association of Physicists in Medicine</pub><pmid>28516652</pmid><doi>10.1118/1.4740218</doi><tpages>2</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-2405
ispartof Medical physics (Lancaster), 2012-07, Vol.39 (7), p.4646-4647
issn 0094-2405
2473-4209
language eng
recordid cdi_crossref_primary_10_1118_1_4740218
source Wiley Online Library All Journals; Alma/SFX Local Collection
subjects Brachytherapy
Cancer
Dosimetry
Lungs
Medical treatment planning
Monte Carlo methods
Numerical modeling
Therapeutics
Tissues
title Sci—Sat AM: Brachy — 11: Improving treatment planning for I‐125 lung brachytherapy using Monte Carlo methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T17%3A14%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sci%E2%80%94Sat%20AM:%20Brachy%20%E2%80%94%2011:%20Improving%20treatment%20planning%20for%20I%E2%80%90125%20lung%20brachytherapy%20using%20Monte%20Carlo%20methods&rft.jtitle=Medical%20physics%20(Lancaster)&rft.au=Sutherland,%20JGH&rft.date=2012-07&rft.volume=39&rft.issue=7&rft.spage=4646&rft.epage=4647&rft.pages=4646-4647&rft.issn=0094-2405&rft.eissn=2473-4209&rft.coden=MPHYA6&rft_id=info:doi/10.1118/1.4740218&rft_dat=%3Cproquest_cross%3E1900127281%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1900127281&rft_id=info:pmid/28516652&rfr_iscdi=true