Scaling law for noise variance and spatial resolution in differential phase contrast computed tomography
Purpose: The noise variance versus spatial resolution relationship in differential phase contrast (DPC) projection imaging and computed tomography (CT) are derived and compared to conventional absorption-based x-ray projection imaging and CT. Methods: The scaling law for DPC-CT is theoretically deri...
Gespeichert in:
Veröffentlicht in: | Medical physics (Lancaster) 2011-02, Vol.38 (2), p.584-588 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 588 |
---|---|
container_issue | 2 |
container_start_page | 584 |
container_title | Medical physics (Lancaster) |
container_volume | 38 |
creator | Chen, Guang-Hong Zambelli, Joseph Li, Ke Bevins, Nicholas Qi, Zhihua |
description | Purpose:
The noise variance versus spatial resolution relationship in differential phase contrast (DPC) projection imaging and computed tomography (CT) are derived and compared to conventional absorption-based x-ray projection imaging and CT.
Methods:
The scaling law for DPC-CT is theoretically derived and subsequently validated with phantom results from an experimental Talbot–Lau interferometer system.
Results:
For the DPC imaging method, the noise variance in the differential projection images follows the same inverse-square law with spatial resolution as in conventional absorption-based x-ray imaging projections. However, both in theory and experimental results, in DPC-CT the noise variance scales with spatial resolution following an inverse linear relationship with fixed slice thickness.
Conclusions:
The scaling law in DPC-CT implies a lesser noise, and therefore dose, penalty for moving to higher spatial resolutions when compared to conventional absorption-based CT in order to maintain the same contrast-to-noise ratio. |
doi_str_mv | 10.1118/1.3533718 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1118_1_3533718</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>859759734</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5658-a5de14e7266ad30b48be946a84c9a0042d0f17999cc0b80151c824a5809dd24e3</originalsourceid><addsrcrecordid>eNp9kluL1DAYhoso7rh64R-QgBei0DXHNrlZkMUTrCio1yGTpNNIm9QknWX-valTV0VGCCTwPXm_01tVjxG8QAjxl-iCMEJaxO9UG0xbUlMMxd1qA6GgNaaQnVUPUvoGIWwIg_erM4wow41gm6r_rNXg_A4M6gZ0IQIfXLJgr6JTXlugvAFpUtmpAUSbwjBnFzxwHhjXdTZa_zM09ar80sHnqFIuj3GaszUghzHsopr6w8PqXqeGZB-t93n19c3rL1fv6uuPb99fvbquNWsYrxUzFlHb4qZRhsAt5VsraKM41UJBSLGBHWqFEFrDLYeIIc0xVYxDYQymlpxXl0fdad6O1mi7lDTIKbpRxYMMysm_I971chf2kkACG0SKwNOjQEjZyaRdtrovnXmrs8RlsA0XvFDP1jQxfJ9tynJ0SdthUN6GOUnORFsOoYV8fiR1DClF293WgqBc1ieRXNdX2Cd_Fn9L_tpXAeojcOMGezitJD98WgXXaSx9qGV1p_-sTpDFCbI4QS5OKAIvTgnsC_M74WS6_8H_9voDDgbWCg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>859759734</pqid></control><display><type>article</type><title>Scaling law for noise variance and spatial resolution in differential phase contrast computed tomography</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Chen, Guang-Hong ; Zambelli, Joseph ; Li, Ke ; Bevins, Nicholas ; Qi, Zhihua</creator><creatorcontrib>Chen, Guang-Hong ; Zambelli, Joseph ; Li, Ke ; Bevins, Nicholas ; Qi, Zhihua</creatorcontrib><description>Purpose:
The noise variance versus spatial resolution relationship in differential phase contrast (DPC) projection imaging and computed tomography (CT) are derived and compared to conventional absorption-based x-ray projection imaging and CT.
Methods:
The scaling law for DPC-CT is theoretically derived and subsequently validated with phantom results from an experimental Talbot–Lau interferometer system.
Results:
For the DPC imaging method, the noise variance in the differential projection images follows the same inverse-square law with spatial resolution as in conventional absorption-based x-ray imaging projections. However, both in theory and experimental results, in DPC-CT the noise variance scales with spatial resolution following an inverse linear relationship with fixed slice thickness.
Conclusions:
The scaling law in DPC-CT implies a lesser noise, and therefore dose, penalty for moving to higher spatial resolutions when compared to conventional absorption-based CT in order to maintain the same contrast-to-noise ratio.</description><identifier>ISSN: 0094-2405</identifier><identifier>EISSN: 2473-4209</identifier><identifier>EISSN: 0094-2405</identifier><identifier>DOI: 10.1118/1.3533718</identifier><identifier>PMID: 21452695</identifier><identifier>CODEN: MPHYA6</identifier><language>eng</language><publisher>United States: American Association of Physicists in Medicine</publisher><subject>60 APPLIED LIFE SCIENCES ; ABSORPTION ; Computed tomography ; computerised tomography ; COMPUTERIZED TOMOGRAPHY ; Diffraction gratings ; IMAGE PROCESSING ; Image Processing, Computer-Assisted ; Image reconstruction ; INTERFEROMETERS ; Medical image noise ; medical image processing ; Medical image reconstruction ; Medical image spatial resolution ; Medical imaging ; Medical Physics Letters ; Medical X‐ray imaging ; NOISE ; PHANTOMS ; Phantoms, Imaging ; Photons ; RADIATION DOSES ; RADIOLOGY AND NUCLEAR MEDICINE ; Reproducibility of Results ; SCALING LAWS ; scaling phenomena ; SPATIAL RESOLUTION ; Tomography, X-Ray Computed - methods ; X RADIATION ; X‐ray imaging</subject><ispartof>Medical physics (Lancaster), 2011-02, Vol.38 (2), p.584-588</ispartof><rights>American Association of Physicists in Medicine</rights><rights>2011 American Association of Physicists in Medicine</rights><rights>Copyright © 2011 American Association of Physicists in Medicine 2011 American Association of Physicists in Medicine</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5658-a5de14e7266ad30b48be946a84c9a0042d0f17999cc0b80151c824a5809dd24e3</citedby><cites>FETCH-LOGICAL-c5658-a5de14e7266ad30b48be946a84c9a0042d0f17999cc0b80151c824a5809dd24e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1118%2F1.3533718$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1118%2F1.3533718$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,777,781,882,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21452695$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22096898$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Guang-Hong</creatorcontrib><creatorcontrib>Zambelli, Joseph</creatorcontrib><creatorcontrib>Li, Ke</creatorcontrib><creatorcontrib>Bevins, Nicholas</creatorcontrib><creatorcontrib>Qi, Zhihua</creatorcontrib><title>Scaling law for noise variance and spatial resolution in differential phase contrast computed tomography</title><title>Medical physics (Lancaster)</title><addtitle>Med Phys</addtitle><description>Purpose:
The noise variance versus spatial resolution relationship in differential phase contrast (DPC) projection imaging and computed tomography (CT) are derived and compared to conventional absorption-based x-ray projection imaging and CT.
Methods:
The scaling law for DPC-CT is theoretically derived and subsequently validated with phantom results from an experimental Talbot–Lau interferometer system.
Results:
For the DPC imaging method, the noise variance in the differential projection images follows the same inverse-square law with spatial resolution as in conventional absorption-based x-ray imaging projections. However, both in theory and experimental results, in DPC-CT the noise variance scales with spatial resolution following an inverse linear relationship with fixed slice thickness.
Conclusions:
The scaling law in DPC-CT implies a lesser noise, and therefore dose, penalty for moving to higher spatial resolutions when compared to conventional absorption-based CT in order to maintain the same contrast-to-noise ratio.</description><subject>60 APPLIED LIFE SCIENCES</subject><subject>ABSORPTION</subject><subject>Computed tomography</subject><subject>computerised tomography</subject><subject>COMPUTERIZED TOMOGRAPHY</subject><subject>Diffraction gratings</subject><subject>IMAGE PROCESSING</subject><subject>Image Processing, Computer-Assisted</subject><subject>Image reconstruction</subject><subject>INTERFEROMETERS</subject><subject>Medical image noise</subject><subject>medical image processing</subject><subject>Medical image reconstruction</subject><subject>Medical image spatial resolution</subject><subject>Medical imaging</subject><subject>Medical Physics Letters</subject><subject>Medical X‐ray imaging</subject><subject>NOISE</subject><subject>PHANTOMS</subject><subject>Phantoms, Imaging</subject><subject>Photons</subject><subject>RADIATION DOSES</subject><subject>RADIOLOGY AND NUCLEAR MEDICINE</subject><subject>Reproducibility of Results</subject><subject>SCALING LAWS</subject><subject>scaling phenomena</subject><subject>SPATIAL RESOLUTION</subject><subject>Tomography, X-Ray Computed - methods</subject><subject>X RADIATION</subject><subject>X‐ray imaging</subject><issn>0094-2405</issn><issn>2473-4209</issn><issn>0094-2405</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kluL1DAYhoso7rh64R-QgBei0DXHNrlZkMUTrCio1yGTpNNIm9QknWX-valTV0VGCCTwPXm_01tVjxG8QAjxl-iCMEJaxO9UG0xbUlMMxd1qA6GgNaaQnVUPUvoGIWwIg_erM4wow41gm6r_rNXg_A4M6gZ0IQIfXLJgr6JTXlugvAFpUtmpAUSbwjBnFzxwHhjXdTZa_zM09ar80sHnqFIuj3GaszUghzHsopr6w8PqXqeGZB-t93n19c3rL1fv6uuPb99fvbquNWsYrxUzFlHb4qZRhsAt5VsraKM41UJBSLGBHWqFEFrDLYeIIc0xVYxDYQymlpxXl0fdad6O1mi7lDTIKbpRxYMMysm_I971chf2kkACG0SKwNOjQEjZyaRdtrovnXmrs8RlsA0XvFDP1jQxfJ9tynJ0SdthUN6GOUnORFsOoYV8fiR1DClF293WgqBc1ieRXNdX2Cd_Fn9L_tpXAeojcOMGezitJD98WgXXaSx9qGV1p_-sTpDFCbI4QS5OKAIvTgnsC_M74WS6_8H_9voDDgbWCg</recordid><startdate>201102</startdate><enddate>201102</enddate><creator>Chen, Guang-Hong</creator><creator>Zambelli, Joseph</creator><creator>Li, Ke</creator><creator>Bevins, Nicholas</creator><creator>Qi, Zhihua</creator><general>American Association of Physicists in Medicine</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>201102</creationdate><title>Scaling law for noise variance and spatial resolution in differential phase contrast computed tomography</title><author>Chen, Guang-Hong ; Zambelli, Joseph ; Li, Ke ; Bevins, Nicholas ; Qi, Zhihua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5658-a5de14e7266ad30b48be946a84c9a0042d0f17999cc0b80151c824a5809dd24e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>60 APPLIED LIFE SCIENCES</topic><topic>ABSORPTION</topic><topic>Computed tomography</topic><topic>computerised tomography</topic><topic>COMPUTERIZED TOMOGRAPHY</topic><topic>Diffraction gratings</topic><topic>IMAGE PROCESSING</topic><topic>Image Processing, Computer-Assisted</topic><topic>Image reconstruction</topic><topic>INTERFEROMETERS</topic><topic>Medical image noise</topic><topic>medical image processing</topic><topic>Medical image reconstruction</topic><topic>Medical image spatial resolution</topic><topic>Medical imaging</topic><topic>Medical Physics Letters</topic><topic>Medical X‐ray imaging</topic><topic>NOISE</topic><topic>PHANTOMS</topic><topic>Phantoms, Imaging</topic><topic>Photons</topic><topic>RADIATION DOSES</topic><topic>RADIOLOGY AND NUCLEAR MEDICINE</topic><topic>Reproducibility of Results</topic><topic>SCALING LAWS</topic><topic>scaling phenomena</topic><topic>SPATIAL RESOLUTION</topic><topic>Tomography, X-Ray Computed - methods</topic><topic>X RADIATION</topic><topic>X‐ray imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Guang-Hong</creatorcontrib><creatorcontrib>Zambelli, Joseph</creatorcontrib><creatorcontrib>Li, Ke</creatorcontrib><creatorcontrib>Bevins, Nicholas</creatorcontrib><creatorcontrib>Qi, Zhihua</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Medical physics (Lancaster)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Guang-Hong</au><au>Zambelli, Joseph</au><au>Li, Ke</au><au>Bevins, Nicholas</au><au>Qi, Zhihua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scaling law for noise variance and spatial resolution in differential phase contrast computed tomography</atitle><jtitle>Medical physics (Lancaster)</jtitle><addtitle>Med Phys</addtitle><date>2011-02</date><risdate>2011</risdate><volume>38</volume><issue>2</issue><spage>584</spage><epage>588</epage><pages>584-588</pages><issn>0094-2405</issn><eissn>2473-4209</eissn><eissn>0094-2405</eissn><coden>MPHYA6</coden><abstract>Purpose:
The noise variance versus spatial resolution relationship in differential phase contrast (DPC) projection imaging and computed tomography (CT) are derived and compared to conventional absorption-based x-ray projection imaging and CT.
Methods:
The scaling law for DPC-CT is theoretically derived and subsequently validated with phantom results from an experimental Talbot–Lau interferometer system.
Results:
For the DPC imaging method, the noise variance in the differential projection images follows the same inverse-square law with spatial resolution as in conventional absorption-based x-ray imaging projections. However, both in theory and experimental results, in DPC-CT the noise variance scales with spatial resolution following an inverse linear relationship with fixed slice thickness.
Conclusions:
The scaling law in DPC-CT implies a lesser noise, and therefore dose, penalty for moving to higher spatial resolutions when compared to conventional absorption-based CT in order to maintain the same contrast-to-noise ratio.</abstract><cop>United States</cop><pub>American Association of Physicists in Medicine</pub><pmid>21452695</pmid><doi>10.1118/1.3533718</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-2405 |
ispartof | Medical physics (Lancaster), 2011-02, Vol.38 (2), p.584-588 |
issn | 0094-2405 2473-4209 0094-2405 |
language | eng |
recordid | cdi_crossref_primary_10_1118_1_3533718 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection |
subjects | 60 APPLIED LIFE SCIENCES ABSORPTION Computed tomography computerised tomography COMPUTERIZED TOMOGRAPHY Diffraction gratings IMAGE PROCESSING Image Processing, Computer-Assisted Image reconstruction INTERFEROMETERS Medical image noise medical image processing Medical image reconstruction Medical image spatial resolution Medical imaging Medical Physics Letters Medical X‐ray imaging NOISE PHANTOMS Phantoms, Imaging Photons RADIATION DOSES RADIOLOGY AND NUCLEAR MEDICINE Reproducibility of Results SCALING LAWS scaling phenomena SPATIAL RESOLUTION Tomography, X-Ray Computed - methods X RADIATION X‐ray imaging |
title | Scaling law for noise variance and spatial resolution in differential phase contrast computed tomography |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T08%3A01%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scaling%20law%20for%20noise%20variance%20and%20spatial%20resolution%20in%20differential%20phase%20contrast%20computed%20tomography&rft.jtitle=Medical%20physics%20(Lancaster)&rft.au=Chen,%20Guang-Hong&rft.date=2011-02&rft.volume=38&rft.issue=2&rft.spage=584&rft.epage=588&rft.pages=584-588&rft.issn=0094-2405&rft.eissn=2473-4209&rft.coden=MPHYA6&rft_id=info:doi/10.1118/1.3533718&rft_dat=%3Cproquest_cross%3E859759734%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=859759734&rft_id=info:pmid/21452695&rfr_iscdi=true |