Scaling law for noise variance and spatial resolution in differential phase contrast computed tomography

Purpose: The noise variance versus spatial resolution relationship in differential phase contrast (DPC) projection imaging and computed tomography (CT) are derived and compared to conventional absorption-based x-ray projection imaging and CT. Methods: The scaling law for DPC-CT is theoretically deri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical physics (Lancaster) 2011-02, Vol.38 (2), p.584-588
Hauptverfasser: Chen, Guang-Hong, Zambelli, Joseph, Li, Ke, Bevins, Nicholas, Qi, Zhihua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 588
container_issue 2
container_start_page 584
container_title Medical physics (Lancaster)
container_volume 38
creator Chen, Guang-Hong
Zambelli, Joseph
Li, Ke
Bevins, Nicholas
Qi, Zhihua
description Purpose: The noise variance versus spatial resolution relationship in differential phase contrast (DPC) projection imaging and computed tomography (CT) are derived and compared to conventional absorption-based x-ray projection imaging and CT. Methods: The scaling law for DPC-CT is theoretically derived and subsequently validated with phantom results from an experimental Talbot–Lau interferometer system. Results: For the DPC imaging method, the noise variance in the differential projection images follows the same inverse-square law with spatial resolution as in conventional absorption-based x-ray imaging projections. However, both in theory and experimental results, in DPC-CT the noise variance scales with spatial resolution following an inverse linear relationship with fixed slice thickness. Conclusions: The scaling law in DPC-CT implies a lesser noise, and therefore dose, penalty for moving to higher spatial resolutions when compared to conventional absorption-based CT in order to maintain the same contrast-to-noise ratio.
doi_str_mv 10.1118/1.3533718
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1118_1_3533718</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>859759734</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5658-a5de14e7266ad30b48be946a84c9a0042d0f17999cc0b80151c824a5809dd24e3</originalsourceid><addsrcrecordid>eNp9kluL1DAYhoso7rh64R-QgBei0DXHNrlZkMUTrCio1yGTpNNIm9QknWX-valTV0VGCCTwPXm_01tVjxG8QAjxl-iCMEJaxO9UG0xbUlMMxd1qA6GgNaaQnVUPUvoGIWwIg_erM4wow41gm6r_rNXg_A4M6gZ0IQIfXLJgr6JTXlugvAFpUtmpAUSbwjBnFzxwHhjXdTZa_zM09ar80sHnqFIuj3GaszUghzHsopr6w8PqXqeGZB-t93n19c3rL1fv6uuPb99fvbquNWsYrxUzFlHb4qZRhsAt5VsraKM41UJBSLGBHWqFEFrDLYeIIc0xVYxDYQymlpxXl0fdad6O1mi7lDTIKbpRxYMMysm_I971chf2kkACG0SKwNOjQEjZyaRdtrovnXmrs8RlsA0XvFDP1jQxfJ9tynJ0SdthUN6GOUnORFsOoYV8fiR1DClF293WgqBc1ieRXNdX2Cd_Fn9L_tpXAeojcOMGezitJD98WgXXaSx9qGV1p_-sTpDFCbI4QS5OKAIvTgnsC_M74WS6_8H_9voDDgbWCg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>859759734</pqid></control><display><type>article</type><title>Scaling law for noise variance and spatial resolution in differential phase contrast computed tomography</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Chen, Guang-Hong ; Zambelli, Joseph ; Li, Ke ; Bevins, Nicholas ; Qi, Zhihua</creator><creatorcontrib>Chen, Guang-Hong ; Zambelli, Joseph ; Li, Ke ; Bevins, Nicholas ; Qi, Zhihua</creatorcontrib><description>Purpose: The noise variance versus spatial resolution relationship in differential phase contrast (DPC) projection imaging and computed tomography (CT) are derived and compared to conventional absorption-based x-ray projection imaging and CT. Methods: The scaling law for DPC-CT is theoretically derived and subsequently validated with phantom results from an experimental Talbot–Lau interferometer system. Results: For the DPC imaging method, the noise variance in the differential projection images follows the same inverse-square law with spatial resolution as in conventional absorption-based x-ray imaging projections. However, both in theory and experimental results, in DPC-CT the noise variance scales with spatial resolution following an inverse linear relationship with fixed slice thickness. Conclusions: The scaling law in DPC-CT implies a lesser noise, and therefore dose, penalty for moving to higher spatial resolutions when compared to conventional absorption-based CT in order to maintain the same contrast-to-noise ratio.</description><identifier>ISSN: 0094-2405</identifier><identifier>EISSN: 2473-4209</identifier><identifier>EISSN: 0094-2405</identifier><identifier>DOI: 10.1118/1.3533718</identifier><identifier>PMID: 21452695</identifier><identifier>CODEN: MPHYA6</identifier><language>eng</language><publisher>United States: American Association of Physicists in Medicine</publisher><subject>60 APPLIED LIFE SCIENCES ; ABSORPTION ; Computed tomography ; computerised tomography ; COMPUTERIZED TOMOGRAPHY ; Diffraction gratings ; IMAGE PROCESSING ; Image Processing, Computer-Assisted ; Image reconstruction ; INTERFEROMETERS ; Medical image noise ; medical image processing ; Medical image reconstruction ; Medical image spatial resolution ; Medical imaging ; Medical Physics Letters ; Medical X‐ray imaging ; NOISE ; PHANTOMS ; Phantoms, Imaging ; Photons ; RADIATION DOSES ; RADIOLOGY AND NUCLEAR MEDICINE ; Reproducibility of Results ; SCALING LAWS ; scaling phenomena ; SPATIAL RESOLUTION ; Tomography, X-Ray Computed - methods ; X RADIATION ; X‐ray imaging</subject><ispartof>Medical physics (Lancaster), 2011-02, Vol.38 (2), p.584-588</ispartof><rights>American Association of Physicists in Medicine</rights><rights>2011 American Association of Physicists in Medicine</rights><rights>Copyright © 2011 American Association of Physicists in Medicine 2011 American Association of Physicists in Medicine</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5658-a5de14e7266ad30b48be946a84c9a0042d0f17999cc0b80151c824a5809dd24e3</citedby><cites>FETCH-LOGICAL-c5658-a5de14e7266ad30b48be946a84c9a0042d0f17999cc0b80151c824a5809dd24e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1118%2F1.3533718$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1118%2F1.3533718$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,777,781,882,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21452695$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22096898$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Guang-Hong</creatorcontrib><creatorcontrib>Zambelli, Joseph</creatorcontrib><creatorcontrib>Li, Ke</creatorcontrib><creatorcontrib>Bevins, Nicholas</creatorcontrib><creatorcontrib>Qi, Zhihua</creatorcontrib><title>Scaling law for noise variance and spatial resolution in differential phase contrast computed tomography</title><title>Medical physics (Lancaster)</title><addtitle>Med Phys</addtitle><description>Purpose: The noise variance versus spatial resolution relationship in differential phase contrast (DPC) projection imaging and computed tomography (CT) are derived and compared to conventional absorption-based x-ray projection imaging and CT. Methods: The scaling law for DPC-CT is theoretically derived and subsequently validated with phantom results from an experimental Talbot–Lau interferometer system. Results: For the DPC imaging method, the noise variance in the differential projection images follows the same inverse-square law with spatial resolution as in conventional absorption-based x-ray imaging projections. However, both in theory and experimental results, in DPC-CT the noise variance scales with spatial resolution following an inverse linear relationship with fixed slice thickness. Conclusions: The scaling law in DPC-CT implies a lesser noise, and therefore dose, penalty for moving to higher spatial resolutions when compared to conventional absorption-based CT in order to maintain the same contrast-to-noise ratio.</description><subject>60 APPLIED LIFE SCIENCES</subject><subject>ABSORPTION</subject><subject>Computed tomography</subject><subject>computerised tomography</subject><subject>COMPUTERIZED TOMOGRAPHY</subject><subject>Diffraction gratings</subject><subject>IMAGE PROCESSING</subject><subject>Image Processing, Computer-Assisted</subject><subject>Image reconstruction</subject><subject>INTERFEROMETERS</subject><subject>Medical image noise</subject><subject>medical image processing</subject><subject>Medical image reconstruction</subject><subject>Medical image spatial resolution</subject><subject>Medical imaging</subject><subject>Medical Physics Letters</subject><subject>Medical X‐ray imaging</subject><subject>NOISE</subject><subject>PHANTOMS</subject><subject>Phantoms, Imaging</subject><subject>Photons</subject><subject>RADIATION DOSES</subject><subject>RADIOLOGY AND NUCLEAR MEDICINE</subject><subject>Reproducibility of Results</subject><subject>SCALING LAWS</subject><subject>scaling phenomena</subject><subject>SPATIAL RESOLUTION</subject><subject>Tomography, X-Ray Computed - methods</subject><subject>X RADIATION</subject><subject>X‐ray imaging</subject><issn>0094-2405</issn><issn>2473-4209</issn><issn>0094-2405</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kluL1DAYhoso7rh64R-QgBei0DXHNrlZkMUTrCio1yGTpNNIm9QknWX-valTV0VGCCTwPXm_01tVjxG8QAjxl-iCMEJaxO9UG0xbUlMMxd1qA6GgNaaQnVUPUvoGIWwIg_erM4wow41gm6r_rNXg_A4M6gZ0IQIfXLJgr6JTXlugvAFpUtmpAUSbwjBnFzxwHhjXdTZa_zM09ar80sHnqFIuj3GaszUghzHsopr6w8PqXqeGZB-t93n19c3rL1fv6uuPb99fvbquNWsYrxUzFlHb4qZRhsAt5VsraKM41UJBSLGBHWqFEFrDLYeIIc0xVYxDYQymlpxXl0fdad6O1mi7lDTIKbpRxYMMysm_I971chf2kkACG0SKwNOjQEjZyaRdtrovnXmrs8RlsA0XvFDP1jQxfJ9tynJ0SdthUN6GOUnORFsOoYV8fiR1DClF293WgqBc1ieRXNdX2Cd_Fn9L_tpXAeojcOMGezitJD98WgXXaSx9qGV1p_-sTpDFCbI4QS5OKAIvTgnsC_M74WS6_8H_9voDDgbWCg</recordid><startdate>201102</startdate><enddate>201102</enddate><creator>Chen, Guang-Hong</creator><creator>Zambelli, Joseph</creator><creator>Li, Ke</creator><creator>Bevins, Nicholas</creator><creator>Qi, Zhihua</creator><general>American Association of Physicists in Medicine</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>201102</creationdate><title>Scaling law for noise variance and spatial resolution in differential phase contrast computed tomography</title><author>Chen, Guang-Hong ; Zambelli, Joseph ; Li, Ke ; Bevins, Nicholas ; Qi, Zhihua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5658-a5de14e7266ad30b48be946a84c9a0042d0f17999cc0b80151c824a5809dd24e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>60 APPLIED LIFE SCIENCES</topic><topic>ABSORPTION</topic><topic>Computed tomography</topic><topic>computerised tomography</topic><topic>COMPUTERIZED TOMOGRAPHY</topic><topic>Diffraction gratings</topic><topic>IMAGE PROCESSING</topic><topic>Image Processing, Computer-Assisted</topic><topic>Image reconstruction</topic><topic>INTERFEROMETERS</topic><topic>Medical image noise</topic><topic>medical image processing</topic><topic>Medical image reconstruction</topic><topic>Medical image spatial resolution</topic><topic>Medical imaging</topic><topic>Medical Physics Letters</topic><topic>Medical X‐ray imaging</topic><topic>NOISE</topic><topic>PHANTOMS</topic><topic>Phantoms, Imaging</topic><topic>Photons</topic><topic>RADIATION DOSES</topic><topic>RADIOLOGY AND NUCLEAR MEDICINE</topic><topic>Reproducibility of Results</topic><topic>SCALING LAWS</topic><topic>scaling phenomena</topic><topic>SPATIAL RESOLUTION</topic><topic>Tomography, X-Ray Computed - methods</topic><topic>X RADIATION</topic><topic>X‐ray imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Guang-Hong</creatorcontrib><creatorcontrib>Zambelli, Joseph</creatorcontrib><creatorcontrib>Li, Ke</creatorcontrib><creatorcontrib>Bevins, Nicholas</creatorcontrib><creatorcontrib>Qi, Zhihua</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Medical physics (Lancaster)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Guang-Hong</au><au>Zambelli, Joseph</au><au>Li, Ke</au><au>Bevins, Nicholas</au><au>Qi, Zhihua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scaling law for noise variance and spatial resolution in differential phase contrast computed tomography</atitle><jtitle>Medical physics (Lancaster)</jtitle><addtitle>Med Phys</addtitle><date>2011-02</date><risdate>2011</risdate><volume>38</volume><issue>2</issue><spage>584</spage><epage>588</epage><pages>584-588</pages><issn>0094-2405</issn><eissn>2473-4209</eissn><eissn>0094-2405</eissn><coden>MPHYA6</coden><abstract>Purpose: The noise variance versus spatial resolution relationship in differential phase contrast (DPC) projection imaging and computed tomography (CT) are derived and compared to conventional absorption-based x-ray projection imaging and CT. Methods: The scaling law for DPC-CT is theoretically derived and subsequently validated with phantom results from an experimental Talbot–Lau interferometer system. Results: For the DPC imaging method, the noise variance in the differential projection images follows the same inverse-square law with spatial resolution as in conventional absorption-based x-ray imaging projections. However, both in theory and experimental results, in DPC-CT the noise variance scales with spatial resolution following an inverse linear relationship with fixed slice thickness. Conclusions: The scaling law in DPC-CT implies a lesser noise, and therefore dose, penalty for moving to higher spatial resolutions when compared to conventional absorption-based CT in order to maintain the same contrast-to-noise ratio.</abstract><cop>United States</cop><pub>American Association of Physicists in Medicine</pub><pmid>21452695</pmid><doi>10.1118/1.3533718</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-2405
ispartof Medical physics (Lancaster), 2011-02, Vol.38 (2), p.584-588
issn 0094-2405
2473-4209
0094-2405
language eng
recordid cdi_crossref_primary_10_1118_1_3533718
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection
subjects 60 APPLIED LIFE SCIENCES
ABSORPTION
Computed tomography
computerised tomography
COMPUTERIZED TOMOGRAPHY
Diffraction gratings
IMAGE PROCESSING
Image Processing, Computer-Assisted
Image reconstruction
INTERFEROMETERS
Medical image noise
medical image processing
Medical image reconstruction
Medical image spatial resolution
Medical imaging
Medical Physics Letters
Medical X‐ray imaging
NOISE
PHANTOMS
Phantoms, Imaging
Photons
RADIATION DOSES
RADIOLOGY AND NUCLEAR MEDICINE
Reproducibility of Results
SCALING LAWS
scaling phenomena
SPATIAL RESOLUTION
Tomography, X-Ray Computed - methods
X RADIATION
X‐ray imaging
title Scaling law for noise variance and spatial resolution in differential phase contrast computed tomography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T08%3A01%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scaling%20law%20for%20noise%20variance%20and%20spatial%20resolution%20in%20differential%20phase%20contrast%20computed%20tomography&rft.jtitle=Medical%20physics%20(Lancaster)&rft.au=Chen,%20Guang-Hong&rft.date=2011-02&rft.volume=38&rft.issue=2&rft.spage=584&rft.epage=588&rft.pages=584-588&rft.issn=0094-2405&rft.eissn=2473-4209&rft.coden=MPHYA6&rft_id=info:doi/10.1118/1.3533718&rft_dat=%3Cproquest_cross%3E859759734%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=859759734&rft_id=info:pmid/21452695&rfr_iscdi=true