Performance of a 41×41 cm2 amorphous silicon flat panel x‐ray detector designed for angiographic and R&F imaging applications

We measured the physical imaging performance of a 41×41 cm2 amorphous silicon flat panel detector designed for angiographic and R&F imaging applications using methods from the emerging IEC standard for the measurement of detective quantum efficiency (DQE) in digital radiographic detectors. Measu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical physics (Lancaster) 2003-09, Vol.30 (10), p.2715-2726
Hauptverfasser: Granfors, Paul R., Aufrichtig, Richard, Possin, George E., Giambattista, Brian W., Huang, Zhong S., Liu, Jianqiang, Ma, Bing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2726
container_issue 10
container_start_page 2715
container_title Medical physics (Lancaster)
container_volume 30
creator Granfors, Paul R.
Aufrichtig, Richard
Possin, George E.
Giambattista, Brian W.
Huang, Zhong S.
Liu, Jianqiang
Ma, Bing
description We measured the physical imaging performance of a 41×41 cm2 amorphous silicon flat panel detector designed for angiographic and R&F imaging applications using methods from the emerging IEC standard for the measurement of detective quantum efficiency (DQE) in digital radiographic detectors. Measurements on 12 production detectors demonstrate consistent performance. The mean DQE at the detector center is about 0.77 at zero frequency and 0.27 at the Nyquist frequency (2.5 cycles/mm) when measured with a 7 mm of Al HVL spectrum at about 3.6 μGy. The mean MTF at the center of the detector for this spectrum is 0.24 at the Nyquist frequency. For radiographic operation all 2048×2048 detector elements are read out individually. For fluoroscopy, the detector operates in two 30 frame per second modes: either the center 1024×1024 detector elements are read out or the entire detector is read out with 2×2 pixel binning. A model was developed to predict differences in performance between the modes, and measurements demonstrate agreement with the model. Lag was measured using a quasi‐equilibrium exposure method and was found to be 0.044 in the first frame and less than 0.007 after 1 s. We demonstrated that it is possible to use the lag data to correct for temporal correlation in images when measuring DQE with a fluoroscopic imaging technique. Measurements as a function of position on the detector demonstrate a high degree of uniformity. We also characterized dependences on spectrum, exposure level, and direction. Finally, we measured the DQE of a current state of the art image intensifier/CCD system using the same method as for the flat panel. We found the image intensifier system to have lower DQE than the flat panel at high exposure levels and approximately equivalent DQE at fluoroscopic levels.
doi_str_mv 10.1118/1.1609151
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1118_1_1609151</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>MP9151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1781-ff74f4c6120c96e54d162e0ec6c0f5916fb9644769c7138136efc9a85b5f0b63</originalsourceid><addsrcrecordid>eNp1kLFOwzAURS0EEqUw8AeekBhS3kscJx5RRQGpiAp1j1zHTo2SOLKLoFvFxsbGB_En_RIC7cp035WOjp4uIecII0TMr3CEHASmeEAGMcuSiMUgDskAQLAoZpAek5MQngGAJykMyPtMe-N8I1ulqTNUUobfXwy3mw_VxFQ2zndL9xJosLVVrqWmlivayVbX9G27-fRyTUu90mrlfH8EW7W6pL2RyrayrvKyW1rVl5I-XUyobWRl24rKrut1cmVdG07JkZF10Gf7HJL55GY-voumj7f34-tppDDLMTImY4YpjjEowXXKSuSxBq24ApMK5GYhOGMZFyrDJMeEa6OEzNNFamDBkyG53GmVdyF4bYrO9-_4dYFQ_G5XYLHfrmejHftqa73-HyweZn_8D-FGcYY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Performance of a 41×41 cm2 amorphous silicon flat panel x‐ray detector designed for angiographic and R&amp;F imaging applications</title><source>Wiley Online Library All Journals</source><creator>Granfors, Paul R. ; Aufrichtig, Richard ; Possin, George E. ; Giambattista, Brian W. ; Huang, Zhong S. ; Liu, Jianqiang ; Ma, Bing</creator><creatorcontrib>Granfors, Paul R. ; Aufrichtig, Richard ; Possin, George E. ; Giambattista, Brian W. ; Huang, Zhong S. ; Liu, Jianqiang ; Ma, Bing</creatorcontrib><description>We measured the physical imaging performance of a 41×41 cm2 amorphous silicon flat panel detector designed for angiographic and R&amp;F imaging applications using methods from the emerging IEC standard for the measurement of detective quantum efficiency (DQE) in digital radiographic detectors. Measurements on 12 production detectors demonstrate consistent performance. The mean DQE at the detector center is about 0.77 at zero frequency and 0.27 at the Nyquist frequency (2.5 cycles/mm) when measured with a 7 mm of Al HVL spectrum at about 3.6 μGy. The mean MTF at the center of the detector for this spectrum is 0.24 at the Nyquist frequency. For radiographic operation all 2048×2048 detector elements are read out individually. For fluoroscopy, the detector operates in two 30 frame per second modes: either the center 1024×1024 detector elements are read out or the entire detector is read out with 2×2 pixel binning. A model was developed to predict differences in performance between the modes, and measurements demonstrate agreement with the model. Lag was measured using a quasi‐equilibrium exposure method and was found to be 0.044 in the first frame and less than 0.007 after 1 s. We demonstrated that it is possible to use the lag data to correct for temporal correlation in images when measuring DQE with a fluoroscopic imaging technique. Measurements as a function of position on the detector demonstrate a high degree of uniformity. We also characterized dependences on spectrum, exposure level, and direction. Finally, we measured the DQE of a current state of the art image intensifier/CCD system using the same method as for the flat panel. We found the image intensifier system to have lower DQE than the flat panel at high exposure levels and approximately equivalent DQE at fluoroscopic levels.</description><identifier>ISSN: 0094-2405</identifier><identifier>EISSN: 2473-4209</identifier><identifier>DOI: 10.1118/1.1609151</identifier><language>eng</language><publisher>American Association of Physicists in Medicine</publisher><subject>amorphous semiconductors ; amorphous silicon ; angiography ; CCD image sensors ; detective quantum efficiency ; diagnostic radiography ; digital ; Digital radiography ; dosimetry ; Dosimetry/exposure assessment ; DQE ; elemental semiconductors ; flat panel detector ; Image intensifiers ; Image sensors ; Medical imaging ; Modulation transfer functions ; Quantum measurement theory ; Radiography ; silicon ; Silicon detectors ; Solid‐state detectors ; X‐ and γ‐ray sources, mirrors, gratings, and detectors ; X‐ray detection ; X‐ray detectors</subject><ispartof>Medical physics (Lancaster), 2003-09, Vol.30 (10), p.2715-2726</ispartof><rights>2003 American Association of Physicists in Medicine</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1781-ff74f4c6120c96e54d162e0ec6c0f5916fb9644769c7138136efc9a85b5f0b63</citedby><cites>FETCH-LOGICAL-c1781-ff74f4c6120c96e54d162e0ec6c0f5916fb9644769c7138136efc9a85b5f0b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1118%2F1.1609151$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1118%2F1.1609151$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Granfors, Paul R.</creatorcontrib><creatorcontrib>Aufrichtig, Richard</creatorcontrib><creatorcontrib>Possin, George E.</creatorcontrib><creatorcontrib>Giambattista, Brian W.</creatorcontrib><creatorcontrib>Huang, Zhong S.</creatorcontrib><creatorcontrib>Liu, Jianqiang</creatorcontrib><creatorcontrib>Ma, Bing</creatorcontrib><title>Performance of a 41×41 cm2 amorphous silicon flat panel x‐ray detector designed for angiographic and R&amp;F imaging applications</title><title>Medical physics (Lancaster)</title><description>We measured the physical imaging performance of a 41×41 cm2 amorphous silicon flat panel detector designed for angiographic and R&amp;F imaging applications using methods from the emerging IEC standard for the measurement of detective quantum efficiency (DQE) in digital radiographic detectors. Measurements on 12 production detectors demonstrate consistent performance. The mean DQE at the detector center is about 0.77 at zero frequency and 0.27 at the Nyquist frequency (2.5 cycles/mm) when measured with a 7 mm of Al HVL spectrum at about 3.6 μGy. The mean MTF at the center of the detector for this spectrum is 0.24 at the Nyquist frequency. For radiographic operation all 2048×2048 detector elements are read out individually. For fluoroscopy, the detector operates in two 30 frame per second modes: either the center 1024×1024 detector elements are read out or the entire detector is read out with 2×2 pixel binning. A model was developed to predict differences in performance between the modes, and measurements demonstrate agreement with the model. Lag was measured using a quasi‐equilibrium exposure method and was found to be 0.044 in the first frame and less than 0.007 after 1 s. We demonstrated that it is possible to use the lag data to correct for temporal correlation in images when measuring DQE with a fluoroscopic imaging technique. Measurements as a function of position on the detector demonstrate a high degree of uniformity. We also characterized dependences on spectrum, exposure level, and direction. Finally, we measured the DQE of a current state of the art image intensifier/CCD system using the same method as for the flat panel. We found the image intensifier system to have lower DQE than the flat panel at high exposure levels and approximately equivalent DQE at fluoroscopic levels.</description><subject>amorphous semiconductors</subject><subject>amorphous silicon</subject><subject>angiography</subject><subject>CCD image sensors</subject><subject>detective quantum efficiency</subject><subject>diagnostic radiography</subject><subject>digital</subject><subject>Digital radiography</subject><subject>dosimetry</subject><subject>Dosimetry/exposure assessment</subject><subject>DQE</subject><subject>elemental semiconductors</subject><subject>flat panel detector</subject><subject>Image intensifiers</subject><subject>Image sensors</subject><subject>Medical imaging</subject><subject>Modulation transfer functions</subject><subject>Quantum measurement theory</subject><subject>Radiography</subject><subject>silicon</subject><subject>Silicon detectors</subject><subject>Solid‐state detectors</subject><subject>X‐ and γ‐ray sources, mirrors, gratings, and detectors</subject><subject>X‐ray detection</subject><subject>X‐ray detectors</subject><issn>0094-2405</issn><issn>2473-4209</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNp1kLFOwzAURS0EEqUw8AeekBhS3kscJx5RRQGpiAp1j1zHTo2SOLKLoFvFxsbGB_En_RIC7cp035WOjp4uIecII0TMr3CEHASmeEAGMcuSiMUgDskAQLAoZpAek5MQngGAJykMyPtMe-N8I1ulqTNUUobfXwy3mw_VxFQ2zndL9xJosLVVrqWmlivayVbX9G27-fRyTUu90mrlfH8EW7W6pL2RyrayrvKyW1rVl5I-XUyobWRl24rKrut1cmVdG07JkZF10Gf7HJL55GY-voumj7f34-tppDDLMTImY4YpjjEowXXKSuSxBq24ApMK5GYhOGMZFyrDJMeEa6OEzNNFamDBkyG53GmVdyF4bYrO9-_4dYFQ_G5XYLHfrmejHftqa73-HyweZn_8D-FGcYY</recordid><startdate>20030918</startdate><enddate>20030918</enddate><creator>Granfors, Paul R.</creator><creator>Aufrichtig, Richard</creator><creator>Possin, George E.</creator><creator>Giambattista, Brian W.</creator><creator>Huang, Zhong S.</creator><creator>Liu, Jianqiang</creator><creator>Ma, Bing</creator><general>American Association of Physicists in Medicine</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20030918</creationdate><title>Performance of a 41×41 cm2 amorphous silicon flat panel x‐ray detector designed for angiographic and R&amp;F imaging applications</title><author>Granfors, Paul R. ; Aufrichtig, Richard ; Possin, George E. ; Giambattista, Brian W. ; Huang, Zhong S. ; Liu, Jianqiang ; Ma, Bing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1781-ff74f4c6120c96e54d162e0ec6c0f5916fb9644769c7138136efc9a85b5f0b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>amorphous semiconductors</topic><topic>amorphous silicon</topic><topic>angiography</topic><topic>CCD image sensors</topic><topic>detective quantum efficiency</topic><topic>diagnostic radiography</topic><topic>digital</topic><topic>Digital radiography</topic><topic>dosimetry</topic><topic>Dosimetry/exposure assessment</topic><topic>DQE</topic><topic>elemental semiconductors</topic><topic>flat panel detector</topic><topic>Image intensifiers</topic><topic>Image sensors</topic><topic>Medical imaging</topic><topic>Modulation transfer functions</topic><topic>Quantum measurement theory</topic><topic>Radiography</topic><topic>silicon</topic><topic>Silicon detectors</topic><topic>Solid‐state detectors</topic><topic>X‐ and γ‐ray sources, mirrors, gratings, and detectors</topic><topic>X‐ray detection</topic><topic>X‐ray detectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Granfors, Paul R.</creatorcontrib><creatorcontrib>Aufrichtig, Richard</creatorcontrib><creatorcontrib>Possin, George E.</creatorcontrib><creatorcontrib>Giambattista, Brian W.</creatorcontrib><creatorcontrib>Huang, Zhong S.</creatorcontrib><creatorcontrib>Liu, Jianqiang</creatorcontrib><creatorcontrib>Ma, Bing</creatorcontrib><collection>CrossRef</collection><jtitle>Medical physics (Lancaster)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Granfors, Paul R.</au><au>Aufrichtig, Richard</au><au>Possin, George E.</au><au>Giambattista, Brian W.</au><au>Huang, Zhong S.</au><au>Liu, Jianqiang</au><au>Ma, Bing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance of a 41×41 cm2 amorphous silicon flat panel x‐ray detector designed for angiographic and R&amp;F imaging applications</atitle><jtitle>Medical physics (Lancaster)</jtitle><date>2003-09-18</date><risdate>2003</risdate><volume>30</volume><issue>10</issue><spage>2715</spage><epage>2726</epage><pages>2715-2726</pages><issn>0094-2405</issn><eissn>2473-4209</eissn><abstract>We measured the physical imaging performance of a 41×41 cm2 amorphous silicon flat panel detector designed for angiographic and R&amp;F imaging applications using methods from the emerging IEC standard for the measurement of detective quantum efficiency (DQE) in digital radiographic detectors. Measurements on 12 production detectors demonstrate consistent performance. The mean DQE at the detector center is about 0.77 at zero frequency and 0.27 at the Nyquist frequency (2.5 cycles/mm) when measured with a 7 mm of Al HVL spectrum at about 3.6 μGy. The mean MTF at the center of the detector for this spectrum is 0.24 at the Nyquist frequency. For radiographic operation all 2048×2048 detector elements are read out individually. For fluoroscopy, the detector operates in two 30 frame per second modes: either the center 1024×1024 detector elements are read out or the entire detector is read out with 2×2 pixel binning. A model was developed to predict differences in performance between the modes, and measurements demonstrate agreement with the model. Lag was measured using a quasi‐equilibrium exposure method and was found to be 0.044 in the first frame and less than 0.007 after 1 s. We demonstrated that it is possible to use the lag data to correct for temporal correlation in images when measuring DQE with a fluoroscopic imaging technique. Measurements as a function of position on the detector demonstrate a high degree of uniformity. We also characterized dependences on spectrum, exposure level, and direction. Finally, we measured the DQE of a current state of the art image intensifier/CCD system using the same method as for the flat panel. We found the image intensifier system to have lower DQE than the flat panel at high exposure levels and approximately equivalent DQE at fluoroscopic levels.</abstract><pub>American Association of Physicists in Medicine</pub><doi>10.1118/1.1609151</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-2405
ispartof Medical physics (Lancaster), 2003-09, Vol.30 (10), p.2715-2726
issn 0094-2405
2473-4209
language eng
recordid cdi_crossref_primary_10_1118_1_1609151
source Wiley Online Library All Journals
subjects amorphous semiconductors
amorphous silicon
angiography
CCD image sensors
detective quantum efficiency
diagnostic radiography
digital
Digital radiography
dosimetry
Dosimetry/exposure assessment
DQE
elemental semiconductors
flat panel detector
Image intensifiers
Image sensors
Medical imaging
Modulation transfer functions
Quantum measurement theory
Radiography
silicon
Silicon detectors
Solid‐state detectors
X‐ and γ‐ray sources, mirrors, gratings, and detectors
X‐ray detection
X‐ray detectors
title Performance of a 41×41 cm2 amorphous silicon flat panel x‐ray detector designed for angiographic and R&F imaging applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T03%3A35%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20of%20a%2041%C3%9741%E2%80%89cm2%20amorphous%20silicon%20flat%20panel%20x%E2%80%90ray%20detector%20designed%20for%20angiographic%20and%20R&F%20imaging%20applications&rft.jtitle=Medical%20physics%20(Lancaster)&rft.au=Granfors,%20Paul%20R.&rft.date=2003-09-18&rft.volume=30&rft.issue=10&rft.spage=2715&rft.epage=2726&rft.pages=2715-2726&rft.issn=0094-2405&rft.eissn=2473-4209&rft_id=info:doi/10.1118/1.1609151&rft_dat=%3Cwiley_cross%3EMP9151%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true