Wavelet decomposition/reconstruction of images via direct products

The two major aspects of image data compression utilizing wavelet analysis and synthesis are the decomposition of an image and the reconstruction of this image. It has been noticed in this investigation that the pyramid structure of convolution and the down sampling or the up sampling (adding zeros)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronic imaging 2000-01, Vol.9 (1), p.61-71
Hauptverfasser: Griswold, N. C, Mathur, Somit Shah, Yeary, Mark, Spencer, Ronald G
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 71
container_issue 1
container_start_page 61
container_title Journal of electronic imaging
container_volume 9
creator Griswold, N. C
Mathur, Somit Shah
Yeary, Mark
Spencer, Ronald G
description The two major aspects of image data compression utilizing wavelet analysis and synthesis are the decomposition of an image and the reconstruction of this image. It has been noticed in this investigation that the pyramid structure of convolution and the down sampling or the up sampling (adding zeros) and convolution have equivalent operations in vector space analysis. That is, the decomposition is equivalent to an outer product expansion. Therefore, tensor products can easily accomplish the synthesis or reconstruction. This is sometimes called the direct product. It is suggested that this method of implementation saves operations and opens the way to utilization of uniform filter banks. ©
doi_str_mv 10.1117/1.482726
format Article
fullrecord <record><control><sourceid>crossref_spie_</sourceid><recordid>TN_cdi_crossref_primary_10_1117_1_482726</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1117_1_482726</sourcerecordid><originalsourceid>FETCH-LOGICAL-c229t-87b17dac3f4c965e29ac3d8c8d64ba8646f1f857b16207fdc74510ecf76a72eb3</originalsourceid><addsrcrecordid>eNo9T8tOwzAQtBBIlILEJ_jIJa3XSfw4QhVKUREXENwixw9k1NaRHSrx9zgEsYfZGc1otYPQNZAFAPAlLCpBOWUnaAY1IwWl8v00cwK8kJLIc3SR0ichAKKCGbp7U0e7swM2Vod9H5IffDgsY1aHNMQvPUocHPZ79WETPnqFjc_2gPsYTPbTJTpzapfs1d-eo9f75mX1UGyf15vV7bbQ-YehELwDbpQuXaUlqy2VmRuhhWFVpwSrmAMn6pxilHBnNK9qIFY7zhSntivn6Ga6q2NIKVrX9jF_Fb9bIO3YvYV26p6jdIqm3tv_2GOzeWpqMo78RRiBwcTLH7FgWoQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Wavelet decomposition/reconstruction of images via direct products</title><source>SPIE Digital Library (Journals)</source><creator>Griswold, N. C ; Mathur, Somit Shah ; Yeary, Mark ; Spencer, Ronald G</creator><creatorcontrib>Griswold, N. C ; Mathur, Somit Shah ; Yeary, Mark ; Spencer, Ronald G</creatorcontrib><description>The two major aspects of image data compression utilizing wavelet analysis and synthesis are the decomposition of an image and the reconstruction of this image. It has been noticed in this investigation that the pyramid structure of convolution and the down sampling or the up sampling (adding zeros) and convolution have equivalent operations in vector space analysis. That is, the decomposition is equivalent to an outer product expansion. Therefore, tensor products can easily accomplish the synthesis or reconstruction. This is sometimes called the direct product. It is suggested that this method of implementation saves operations and opens the way to utilization of uniform filter banks. ©</description><identifier>ISSN: 1017-9909</identifier><identifier>EISSN: 1560-229X</identifier><identifier>DOI: 10.1117/1.482726</identifier><identifier>CODEN: JEIME5</identifier><language>eng</language><ispartof>Journal of electronic imaging, 2000-01, Vol.9 (1), p.61-71</ispartof><rights>2000 SPIE and IS&amp;T</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c229t-87b17dac3f4c965e29ac3d8c8d64ba8646f1f857b16207fdc74510ecf76a72eb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Griswold, N. C</creatorcontrib><creatorcontrib>Mathur, Somit Shah</creatorcontrib><creatorcontrib>Yeary, Mark</creatorcontrib><creatorcontrib>Spencer, Ronald G</creatorcontrib><title>Wavelet decomposition/reconstruction of images via direct products</title><title>Journal of electronic imaging</title><description>The two major aspects of image data compression utilizing wavelet analysis and synthesis are the decomposition of an image and the reconstruction of this image. It has been noticed in this investigation that the pyramid structure of convolution and the down sampling or the up sampling (adding zeros) and convolution have equivalent operations in vector space analysis. That is, the decomposition is equivalent to an outer product expansion. Therefore, tensor products can easily accomplish the synthesis or reconstruction. This is sometimes called the direct product. It is suggested that this method of implementation saves operations and opens the way to utilization of uniform filter banks. ©</description><issn>1017-9909</issn><issn>1560-229X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNo9T8tOwzAQtBBIlILEJ_jIJa3XSfw4QhVKUREXENwixw9k1NaRHSrx9zgEsYfZGc1otYPQNZAFAPAlLCpBOWUnaAY1IwWl8v00cwK8kJLIc3SR0ichAKKCGbp7U0e7swM2Vod9H5IffDgsY1aHNMQvPUocHPZ79WETPnqFjc_2gPsYTPbTJTpzapfs1d-eo9f75mX1UGyf15vV7bbQ-YehELwDbpQuXaUlqy2VmRuhhWFVpwSrmAMn6pxilHBnNK9qIFY7zhSntivn6Ga6q2NIKVrX9jF_Fb9bIO3YvYV26p6jdIqm3tv_2GOzeWpqMo78RRiBwcTLH7FgWoQ</recordid><startdate>20000101</startdate><enddate>20000101</enddate><creator>Griswold, N. C</creator><creator>Mathur, Somit Shah</creator><creator>Yeary, Mark</creator><creator>Spencer, Ronald G</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20000101</creationdate><title>Wavelet decomposition/reconstruction of images via direct products</title><author>Griswold, N. C ; Mathur, Somit Shah ; Yeary, Mark ; Spencer, Ronald G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c229t-87b17dac3f4c965e29ac3d8c8d64ba8646f1f857b16207fdc74510ecf76a72eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Griswold, N. C</creatorcontrib><creatorcontrib>Mathur, Somit Shah</creatorcontrib><creatorcontrib>Yeary, Mark</creatorcontrib><creatorcontrib>Spencer, Ronald G</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of electronic imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Griswold, N. C</au><au>Mathur, Somit Shah</au><au>Yeary, Mark</au><au>Spencer, Ronald G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wavelet decomposition/reconstruction of images via direct products</atitle><jtitle>Journal of electronic imaging</jtitle><date>2000-01-01</date><risdate>2000</risdate><volume>9</volume><issue>1</issue><spage>61</spage><epage>71</epage><pages>61-71</pages><issn>1017-9909</issn><eissn>1560-229X</eissn><coden>JEIME5</coden><abstract>The two major aspects of image data compression utilizing wavelet analysis and synthesis are the decomposition of an image and the reconstruction of this image. It has been noticed in this investigation that the pyramid structure of convolution and the down sampling or the up sampling (adding zeros) and convolution have equivalent operations in vector space analysis. That is, the decomposition is equivalent to an outer product expansion. Therefore, tensor products can easily accomplish the synthesis or reconstruction. This is sometimes called the direct product. It is suggested that this method of implementation saves operations and opens the way to utilization of uniform filter banks. ©</abstract><doi>10.1117/1.482726</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1017-9909
ispartof Journal of electronic imaging, 2000-01, Vol.9 (1), p.61-71
issn 1017-9909
1560-229X
language eng
recordid cdi_crossref_primary_10_1117_1_482726
source SPIE Digital Library (Journals)
title Wavelet decomposition/reconstruction of images via direct products
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T03%3A27%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_spie_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wavelet%20decomposition/reconstruction%20of%20images%20via%20direct%20products&rft.jtitle=Journal%20of%20electronic%20imaging&rft.au=Griswold,%20N.%20C&rft.date=2000-01-01&rft.volume=9&rft.issue=1&rft.spage=61&rft.epage=71&rft.pages=61-71&rft.issn=1017-9909&rft.eissn=1560-229X&rft.coden=JEIME5&rft_id=info:doi/10.1117/1.482726&rft_dat=%3Ccrossref_spie_%3E10_1117_1_482726%3C/crossref_spie_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true