Wavelet decomposition/reconstruction of images via direct products
The two major aspects of image data compression utilizing wavelet analysis and synthesis are the decomposition of an image and the reconstruction of this image. It has been noticed in this investigation that the pyramid structure of convolution and the down sampling or the up sampling (adding zeros)...
Gespeichert in:
Veröffentlicht in: | Journal of electronic imaging 2000-01, Vol.9 (1), p.61-71 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 71 |
---|---|
container_issue | 1 |
container_start_page | 61 |
container_title | Journal of electronic imaging |
container_volume | 9 |
creator | Griswold, N. C Mathur, Somit Shah Yeary, Mark Spencer, Ronald G |
description | The two major aspects of image data compression utilizing wavelet analysis and synthesis are the decomposition of an image and the reconstruction of this image. It has been noticed in this investigation that the pyramid structure of convolution and the down sampling or the up sampling (adding zeros) and convolution have equivalent operations in vector space analysis. That is, the decomposition is equivalent to an outer product expansion. Therefore, tensor products can easily accomplish the synthesis or reconstruction. This is sometimes called the direct product. It is suggested that this method of implementation saves operations and opens the way to utilization of uniform filter banks. © |
doi_str_mv | 10.1117/1.482726 |
format | Article |
fullrecord | <record><control><sourceid>crossref_spie_</sourceid><recordid>TN_cdi_crossref_primary_10_1117_1_482726</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1117_1_482726</sourcerecordid><originalsourceid>FETCH-LOGICAL-c229t-87b17dac3f4c965e29ac3d8c8d64ba8646f1f857b16207fdc74510ecf76a72eb3</originalsourceid><addsrcrecordid>eNo9T8tOwzAQtBBIlILEJ_jIJa3XSfw4QhVKUREXENwixw9k1NaRHSrx9zgEsYfZGc1otYPQNZAFAPAlLCpBOWUnaAY1IwWl8v00cwK8kJLIc3SR0ichAKKCGbp7U0e7swM2Vod9H5IffDgsY1aHNMQvPUocHPZ79WETPnqFjc_2gPsYTPbTJTpzapfs1d-eo9f75mX1UGyf15vV7bbQ-YehELwDbpQuXaUlqy2VmRuhhWFVpwSrmAMn6pxilHBnNK9qIFY7zhSntivn6Ga6q2NIKVrX9jF_Fb9bIO3YvYV26p6jdIqm3tv_2GOzeWpqMo78RRiBwcTLH7FgWoQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Wavelet decomposition/reconstruction of images via direct products</title><source>SPIE Digital Library (Journals)</source><creator>Griswold, N. C ; Mathur, Somit Shah ; Yeary, Mark ; Spencer, Ronald G</creator><creatorcontrib>Griswold, N. C ; Mathur, Somit Shah ; Yeary, Mark ; Spencer, Ronald G</creatorcontrib><description>The two major aspects of image data compression utilizing wavelet analysis and synthesis are the decomposition of an image and the reconstruction of this image. It has been noticed in this investigation that the pyramid structure of convolution and the down sampling or the up sampling (adding zeros) and convolution have equivalent operations in vector space analysis. That is, the decomposition is equivalent to an outer product expansion. Therefore, tensor products can easily accomplish the synthesis or reconstruction. This is sometimes called the direct product. It is suggested that this method of implementation saves operations and opens the way to utilization of uniform filter banks. ©</description><identifier>ISSN: 1017-9909</identifier><identifier>EISSN: 1560-229X</identifier><identifier>DOI: 10.1117/1.482726</identifier><identifier>CODEN: JEIME5</identifier><language>eng</language><ispartof>Journal of electronic imaging, 2000-01, Vol.9 (1), p.61-71</ispartof><rights>2000 SPIE and IS&T</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c229t-87b17dac3f4c965e29ac3d8c8d64ba8646f1f857b16207fdc74510ecf76a72eb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Griswold, N. C</creatorcontrib><creatorcontrib>Mathur, Somit Shah</creatorcontrib><creatorcontrib>Yeary, Mark</creatorcontrib><creatorcontrib>Spencer, Ronald G</creatorcontrib><title>Wavelet decomposition/reconstruction of images via direct products</title><title>Journal of electronic imaging</title><description>The two major aspects of image data compression utilizing wavelet analysis and synthesis are the decomposition of an image and the reconstruction of this image. It has been noticed in this investigation that the pyramid structure of convolution and the down sampling or the up sampling (adding zeros) and convolution have equivalent operations in vector space analysis. That is, the decomposition is equivalent to an outer product expansion. Therefore, tensor products can easily accomplish the synthesis or reconstruction. This is sometimes called the direct product. It is suggested that this method of implementation saves operations and opens the way to utilization of uniform filter banks. ©</description><issn>1017-9909</issn><issn>1560-229X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNo9T8tOwzAQtBBIlILEJ_jIJa3XSfw4QhVKUREXENwixw9k1NaRHSrx9zgEsYfZGc1otYPQNZAFAPAlLCpBOWUnaAY1IwWl8v00cwK8kJLIc3SR0ichAKKCGbp7U0e7swM2Vod9H5IffDgsY1aHNMQvPUocHPZ79WETPnqFjc_2gPsYTPbTJTpzapfs1d-eo9f75mX1UGyf15vV7bbQ-YehELwDbpQuXaUlqy2VmRuhhWFVpwSrmAMn6pxilHBnNK9qIFY7zhSntivn6Ga6q2NIKVrX9jF_Fb9bIO3YvYV26p6jdIqm3tv_2GOzeWpqMo78RRiBwcTLH7FgWoQ</recordid><startdate>20000101</startdate><enddate>20000101</enddate><creator>Griswold, N. C</creator><creator>Mathur, Somit Shah</creator><creator>Yeary, Mark</creator><creator>Spencer, Ronald G</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20000101</creationdate><title>Wavelet decomposition/reconstruction of images via direct products</title><author>Griswold, N. C ; Mathur, Somit Shah ; Yeary, Mark ; Spencer, Ronald G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c229t-87b17dac3f4c965e29ac3d8c8d64ba8646f1f857b16207fdc74510ecf76a72eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Griswold, N. C</creatorcontrib><creatorcontrib>Mathur, Somit Shah</creatorcontrib><creatorcontrib>Yeary, Mark</creatorcontrib><creatorcontrib>Spencer, Ronald G</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of electronic imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Griswold, N. C</au><au>Mathur, Somit Shah</au><au>Yeary, Mark</au><au>Spencer, Ronald G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wavelet decomposition/reconstruction of images via direct products</atitle><jtitle>Journal of electronic imaging</jtitle><date>2000-01-01</date><risdate>2000</risdate><volume>9</volume><issue>1</issue><spage>61</spage><epage>71</epage><pages>61-71</pages><issn>1017-9909</issn><eissn>1560-229X</eissn><coden>JEIME5</coden><abstract>The two major aspects of image data compression utilizing wavelet analysis and synthesis are the decomposition of an image and the reconstruction of this image. It has been noticed in this investigation that the pyramid structure of convolution and the down sampling or the up sampling (adding zeros) and convolution have equivalent operations in vector space analysis. That is, the decomposition is equivalent to an outer product expansion. Therefore, tensor products can easily accomplish the synthesis or reconstruction. This is sometimes called the direct product. It is suggested that this method of implementation saves operations and opens the way to utilization of uniform filter banks. ©</abstract><doi>10.1117/1.482726</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1017-9909 |
ispartof | Journal of electronic imaging, 2000-01, Vol.9 (1), p.61-71 |
issn | 1017-9909 1560-229X |
language | eng |
recordid | cdi_crossref_primary_10_1117_1_482726 |
source | SPIE Digital Library (Journals) |
title | Wavelet decomposition/reconstruction of images via direct products |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T03%3A27%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_spie_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wavelet%20decomposition/reconstruction%20of%20images%20via%20direct%20products&rft.jtitle=Journal%20of%20electronic%20imaging&rft.au=Griswold,%20N.%20C&rft.date=2000-01-01&rft.volume=9&rft.issue=1&rft.spage=61&rft.epage=71&rft.pages=61-71&rft.issn=1017-9909&rft.eissn=1560-229X&rft.coden=JEIME5&rft_id=info:doi/10.1117/1.482726&rft_dat=%3Ccrossref_spie_%3E10_1117_1_482726%3C/crossref_spie_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |