Enhancing minority carrier lifetime in Ge: Insights from HF and HCl cleaning procedures
Efficiently passivating germanium (Ge) surfaces is crucial to reduce the unwanted recombination current in high-performance devices. Chemical surface cleaning is critical to remove surface contaminants and Ge oxides, ensuring effective surface passivation after dielectric deposition. However, Ge oxi...
Gespeichert in:
Veröffentlicht in: | Journal of vacuum science & technology. A, Vacuum, surfaces, and films Vacuum, surfaces, and films, 2024-01, Vol.42 (1) |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Journal of vacuum science & technology. A, Vacuum, surfaces, and films |
container_volume | 42 |
creator | Chapotot, Alexandre Chrétien, Jérémie Fesiienko, Oleh Pargon, Erwine Cho, Jinyoun Dessein, Kristof Boucherif, Abderraouf Hamon, Gwenaëlle Darnon, Maxime |
description | Efficiently passivating germanium (Ge) surfaces is crucial to reduce the unwanted recombination current in high-performance devices. Chemical surface cleaning is critical to remove surface contaminants and Ge oxides, ensuring effective surface passivation after dielectric deposition. However, Ge oxides can rapidly regrow upon air exposure. To understand the surface evolution after wet cleaning, we present a comprehensive study comparing HF and HCl deoxidation steps on p-type Ge surfaces and monitor the surface as a function of air exposure time. Distinct oxide regrowth dynamics are observed: HF-treated samples exhibit swift regrowth of all Ge oxide states, whereas HCl-treated Ge surfaces exhibit a lower concentration of low degrees of oxidation and slower or no regrowth of high oxide states even after 110 min of air exposure. In addition, the presence of Ge–Cl bonds induces different oxidation dynamics compared to the Ge–OH bonds resulting from HF cleaning. This leads to varying surface electronic band structures, with HF-treated Ge exhibiting a strong positive band bending (
+
0.20 eV). Conversely, HCl-treated samples display a lower band curvature (
+
0.07 eV), mostly due to the presence of Ge–Cl bonds on the Ge surface. During air exposure, the increased GeO
x coverage significantly reduces the band bending after HF, while a constant band bending is observed after HCl. Finally, these factors induce a reduction in the surface recombination velocity after wet etching. Combining both chemical and field-induced passivation, HF-treated Ge without rinsing exceeds 800
μs. |
doi_str_mv | 10.1116/6.0003236 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1116_6_0003236</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_04378872v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-b4a92d669fef41fc25ee8059b355c83a20890c077da037d9fbcc368cc115e1993</originalsourceid><addsrcrecordid>eNp90MFKAzEUBdAgCtbqwj_IVmHqSzLJJO5KaTuFghvFZUgzSRuZyZRkFPr3tlh05-rB49y7uAjdE5gQQsSTmAAAo0xcoBHhFArJubpEI6hYWVAC5Brd5PxxRJSCGKH3edyZaEPc4i7EPoXhgK1JKbiE2-DdEDqHQ8RL94xXMYftbsjYp77D9QKb2OB61mLbOhNPFfvUW9d8Jpdv0ZU3bXZ35ztGb4v566wu1i_L1Wy6LixVbCg2pVG0EUJ550viLeXOSeBqwzi3khkKUoGFqmoMsKpRfmMtE9JaQrgjSrExevjp3ZlW71PoTDro3gRdT9f69IOSVVJW9Iv8WZv6nJPzvwEC-rSeFvq83tE-_thsw2CG0Md_8Dd0L22Z</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Enhancing minority carrier lifetime in Ge: Insights from HF and HCl cleaning procedures</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Chapotot, Alexandre ; Chrétien, Jérémie ; Fesiienko, Oleh ; Pargon, Erwine ; Cho, Jinyoun ; Dessein, Kristof ; Boucherif, Abderraouf ; Hamon, Gwenaëlle ; Darnon, Maxime</creator><creatorcontrib>Chapotot, Alexandre ; Chrétien, Jérémie ; Fesiienko, Oleh ; Pargon, Erwine ; Cho, Jinyoun ; Dessein, Kristof ; Boucherif, Abderraouf ; Hamon, Gwenaëlle ; Darnon, Maxime</creatorcontrib><description>Efficiently passivating germanium (Ge) surfaces is crucial to reduce the unwanted recombination current in high-performance devices. Chemical surface cleaning is critical to remove surface contaminants and Ge oxides, ensuring effective surface passivation after dielectric deposition. However, Ge oxides can rapidly regrow upon air exposure. To understand the surface evolution after wet cleaning, we present a comprehensive study comparing HF and HCl deoxidation steps on p-type Ge surfaces and monitor the surface as a function of air exposure time. Distinct oxide regrowth dynamics are observed: HF-treated samples exhibit swift regrowth of all Ge oxide states, whereas HCl-treated Ge surfaces exhibit a lower concentration of low degrees of oxidation and slower or no regrowth of high oxide states even after 110 min of air exposure. In addition, the presence of Ge–Cl bonds induces different oxidation dynamics compared to the Ge–OH bonds resulting from HF cleaning. This leads to varying surface electronic band structures, with HF-treated Ge exhibiting a strong positive band bending (
+
0.20 eV). Conversely, HCl-treated samples display a lower band curvature (
+
0.07 eV), mostly due to the presence of Ge–Cl bonds on the Ge surface. During air exposure, the increased GeO
x coverage significantly reduces the band bending after HF, while a constant band bending is observed after HCl. Finally, these factors induce a reduction in the surface recombination velocity after wet etching. Combining both chemical and field-induced passivation, HF-treated Ge without rinsing exceeds 800
μs.</description><identifier>ISSN: 0734-2101</identifier><identifier>EISSN: 1520-8559</identifier><identifier>DOI: 10.1116/6.0003236</identifier><identifier>CODEN: JVTAD6</identifier><language>eng</language><publisher>American Vacuum Society</publisher><subject>Engineering Sciences</subject><ispartof>Journal of vacuum science & technology. A, Vacuum, surfaces, and films, 2024-01, Vol.42 (1)</ispartof><rights>Author(s)</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c293t-b4a92d669fef41fc25ee8059b355c83a20890c077da037d9fbcc368cc115e1993</cites><orcidid>0000-0001-9693-6054 ; 0000-0003-1383-9676 ; 0000-0001-9833-8621 ; 0000-0002-6188-7157 ; 0000-0002-9440-270X ; 0000-0002-6160-4006 ; 0000-0001-6532-0855 ; 0000-0002-6337-9180 ; 0000-0002-3524-1256</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,794,885,4512,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04378872$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Chapotot, Alexandre</creatorcontrib><creatorcontrib>Chrétien, Jérémie</creatorcontrib><creatorcontrib>Fesiienko, Oleh</creatorcontrib><creatorcontrib>Pargon, Erwine</creatorcontrib><creatorcontrib>Cho, Jinyoun</creatorcontrib><creatorcontrib>Dessein, Kristof</creatorcontrib><creatorcontrib>Boucherif, Abderraouf</creatorcontrib><creatorcontrib>Hamon, Gwenaëlle</creatorcontrib><creatorcontrib>Darnon, Maxime</creatorcontrib><title>Enhancing minority carrier lifetime in Ge: Insights from HF and HCl cleaning procedures</title><title>Journal of vacuum science & technology. A, Vacuum, surfaces, and films</title><description>Efficiently passivating germanium (Ge) surfaces is crucial to reduce the unwanted recombination current in high-performance devices. Chemical surface cleaning is critical to remove surface contaminants and Ge oxides, ensuring effective surface passivation after dielectric deposition. However, Ge oxides can rapidly regrow upon air exposure. To understand the surface evolution after wet cleaning, we present a comprehensive study comparing HF and HCl deoxidation steps on p-type Ge surfaces and monitor the surface as a function of air exposure time. Distinct oxide regrowth dynamics are observed: HF-treated samples exhibit swift regrowth of all Ge oxide states, whereas HCl-treated Ge surfaces exhibit a lower concentration of low degrees of oxidation and slower or no regrowth of high oxide states even after 110 min of air exposure. In addition, the presence of Ge–Cl bonds induces different oxidation dynamics compared to the Ge–OH bonds resulting from HF cleaning. This leads to varying surface electronic band structures, with HF-treated Ge exhibiting a strong positive band bending (
+
0.20 eV). Conversely, HCl-treated samples display a lower band curvature (
+
0.07 eV), mostly due to the presence of Ge–Cl bonds on the Ge surface. During air exposure, the increased GeO
x coverage significantly reduces the band bending after HF, while a constant band bending is observed after HCl. Finally, these factors induce a reduction in the surface recombination velocity after wet etching. Combining both chemical and field-induced passivation, HF-treated Ge without rinsing exceeds 800
μs.</description><subject>Engineering Sciences</subject><issn>0734-2101</issn><issn>1520-8559</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90MFKAzEUBdAgCtbqwj_IVmHqSzLJJO5KaTuFghvFZUgzSRuZyZRkFPr3tlh05-rB49y7uAjdE5gQQsSTmAAAo0xcoBHhFArJubpEI6hYWVAC5Brd5PxxRJSCGKH3edyZaEPc4i7EPoXhgK1JKbiE2-DdEDqHQ8RL94xXMYftbsjYp77D9QKb2OB61mLbOhNPFfvUW9d8Jpdv0ZU3bXZ35ztGb4v566wu1i_L1Wy6LixVbCg2pVG0EUJ550viLeXOSeBqwzi3khkKUoGFqmoMsKpRfmMtE9JaQrgjSrExevjp3ZlW71PoTDro3gRdT9f69IOSVVJW9Iv8WZv6nJPzvwEC-rSeFvq83tE-_thsw2CG0Md_8Dd0L22Z</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Chapotot, Alexandre</creator><creator>Chrétien, Jérémie</creator><creator>Fesiienko, Oleh</creator><creator>Pargon, Erwine</creator><creator>Cho, Jinyoun</creator><creator>Dessein, Kristof</creator><creator>Boucherif, Abderraouf</creator><creator>Hamon, Gwenaëlle</creator><creator>Darnon, Maxime</creator><general>American Vacuum Society</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-9693-6054</orcidid><orcidid>https://orcid.org/0000-0003-1383-9676</orcidid><orcidid>https://orcid.org/0000-0001-9833-8621</orcidid><orcidid>https://orcid.org/0000-0002-6188-7157</orcidid><orcidid>https://orcid.org/0000-0002-9440-270X</orcidid><orcidid>https://orcid.org/0000-0002-6160-4006</orcidid><orcidid>https://orcid.org/0000-0001-6532-0855</orcidid><orcidid>https://orcid.org/0000-0002-6337-9180</orcidid><orcidid>https://orcid.org/0000-0002-3524-1256</orcidid></search><sort><creationdate>20240101</creationdate><title>Enhancing minority carrier lifetime in Ge: Insights from HF and HCl cleaning procedures</title><author>Chapotot, Alexandre ; Chrétien, Jérémie ; Fesiienko, Oleh ; Pargon, Erwine ; Cho, Jinyoun ; Dessein, Kristof ; Boucherif, Abderraouf ; Hamon, Gwenaëlle ; Darnon, Maxime</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-b4a92d669fef41fc25ee8059b355c83a20890c077da037d9fbcc368cc115e1993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Engineering Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chapotot, Alexandre</creatorcontrib><creatorcontrib>Chrétien, Jérémie</creatorcontrib><creatorcontrib>Fesiienko, Oleh</creatorcontrib><creatorcontrib>Pargon, Erwine</creatorcontrib><creatorcontrib>Cho, Jinyoun</creatorcontrib><creatorcontrib>Dessein, Kristof</creatorcontrib><creatorcontrib>Boucherif, Abderraouf</creatorcontrib><creatorcontrib>Hamon, Gwenaëlle</creatorcontrib><creatorcontrib>Darnon, Maxime</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of vacuum science & technology. A, Vacuum, surfaces, and films</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chapotot, Alexandre</au><au>Chrétien, Jérémie</au><au>Fesiienko, Oleh</au><au>Pargon, Erwine</au><au>Cho, Jinyoun</au><au>Dessein, Kristof</au><au>Boucherif, Abderraouf</au><au>Hamon, Gwenaëlle</au><au>Darnon, Maxime</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing minority carrier lifetime in Ge: Insights from HF and HCl cleaning procedures</atitle><jtitle>Journal of vacuum science & technology. A, Vacuum, surfaces, and films</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>42</volume><issue>1</issue><issn>0734-2101</issn><eissn>1520-8559</eissn><coden>JVTAD6</coden><abstract>Efficiently passivating germanium (Ge) surfaces is crucial to reduce the unwanted recombination current in high-performance devices. Chemical surface cleaning is critical to remove surface contaminants and Ge oxides, ensuring effective surface passivation after dielectric deposition. However, Ge oxides can rapidly regrow upon air exposure. To understand the surface evolution after wet cleaning, we present a comprehensive study comparing HF and HCl deoxidation steps on p-type Ge surfaces and monitor the surface as a function of air exposure time. Distinct oxide regrowth dynamics are observed: HF-treated samples exhibit swift regrowth of all Ge oxide states, whereas HCl-treated Ge surfaces exhibit a lower concentration of low degrees of oxidation and slower or no regrowth of high oxide states even after 110 min of air exposure. In addition, the presence of Ge–Cl bonds induces different oxidation dynamics compared to the Ge–OH bonds resulting from HF cleaning. This leads to varying surface electronic band structures, with HF-treated Ge exhibiting a strong positive band bending (
+
0.20 eV). Conversely, HCl-treated samples display a lower band curvature (
+
0.07 eV), mostly due to the presence of Ge–Cl bonds on the Ge surface. During air exposure, the increased GeO
x coverage significantly reduces the band bending after HF, while a constant band bending is observed after HCl. Finally, these factors induce a reduction in the surface recombination velocity after wet etching. Combining both chemical and field-induced passivation, HF-treated Ge without rinsing exceeds 800
μs.</abstract><pub>American Vacuum Society</pub><doi>10.1116/6.0003236</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9693-6054</orcidid><orcidid>https://orcid.org/0000-0003-1383-9676</orcidid><orcidid>https://orcid.org/0000-0001-9833-8621</orcidid><orcidid>https://orcid.org/0000-0002-6188-7157</orcidid><orcidid>https://orcid.org/0000-0002-9440-270X</orcidid><orcidid>https://orcid.org/0000-0002-6160-4006</orcidid><orcidid>https://orcid.org/0000-0001-6532-0855</orcidid><orcidid>https://orcid.org/0000-0002-6337-9180</orcidid><orcidid>https://orcid.org/0000-0002-3524-1256</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0734-2101 |
ispartof | Journal of vacuum science & technology. A, Vacuum, surfaces, and films, 2024-01, Vol.42 (1) |
issn | 0734-2101 1520-8559 |
language | eng |
recordid | cdi_crossref_primary_10_1116_6_0003236 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Engineering Sciences |
title | Enhancing minority carrier lifetime in Ge: Insights from HF and HCl cleaning procedures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T23%3A18%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20minority%20carrier%20lifetime%20in%20Ge:%20Insights%20from%20HF%20and%20HCl%20cleaning%20procedures&rft.jtitle=Journal%20of%20vacuum%20science%20&%20technology.%20A,%20Vacuum,%20surfaces,%20and%20films&rft.au=Chapotot,%20Alexandre&rft.date=2024-01-01&rft.volume=42&rft.issue=1&rft.issn=0734-2101&rft.eissn=1520-8559&rft.coden=JVTAD6&rft_id=info:doi/10.1116/6.0003236&rft_dat=%3Chal_cross%3Eoai_HAL_hal_04378872v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |