Limiting reagent conditions to control inorganic loading in AlOx–PET hybrid fabrics created through vapor-phase infiltration

In this work, the vapor-phase infiltration (VPI) of polyethylene terephthalate (PET) fabrics with trimethylaluminum (TMA) and coreaction with water vapor is explored as a function of limiting TMA reagent conditions versus excess TMA reagent conditions at two infiltration temperatures. TMA is found t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of vacuum science & technology. A, Vacuum, surfaces, and films Vacuum, surfaces, and films, 2023-05, Vol.41 (3)
Hauptverfasser: McGuinness, Emily K., Manno, Haley V., Pyronneau, Kira, Jean, Benjamin C., McClelland, Nicole R., Losego, Mark D.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Journal of vacuum science & technology. A, Vacuum, surfaces, and films
container_volume 41
creator McGuinness, Emily K.
Manno, Haley V.
Pyronneau, Kira
Jean, Benjamin C.
McClelland, Nicole R.
Losego, Mark D.
description In this work, the vapor-phase infiltration (VPI) of polyethylene terephthalate (PET) fabrics with trimethylaluminum (TMA) and coreaction with water vapor is explored as a function of limiting TMA reagent conditions versus excess TMA reagent conditions at two infiltration temperatures. TMA is found to sorb rapidly into PET fibers, with a significant pressure drop occurring within seconds of TMA exposure. When large quantities of polymer are placed within the chamber, minimal residual precursor remains at the end of the pressure drop. This rapid and complete sorption facilitates the control of inorganic loading by purposely delivering a limited quantity of the TMA reagent. The inorganic loading for this system scales linearly with a Precursor:C=O molar ratio of up to 0.35 at 140 °C and 0.5 at 80 °C. After this point, inorganic loading is constant irrespective of the amount of additional TMA reagent supplied. The SEM analysis of pyrolyzed hybrids indicates that this is likely due to the formation of an impermeable layer to subsequent infiltration as the core of the fibers remains uninfiltrated. The Precursor:C=O molar ratio in the subsaturation regime is found to tune the hybrid fabric morphology and material properties such as the optical properties of the fabric. Overall, this work demonstrates how a reagent-limited processing route can control the inorganic loading in VPI synthesized hybrid materials in a simpler manner than trying to control kinetics-driven methods.
doi_str_mv 10.1116/6.0002534
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1116_6_0002534</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1116_6_0002534</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-90088e1042e24c400a1944cdd80d401c9b9d888c31b47f4a27706c58518fcf2a3</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqWw4AbegpQydpzEWVZV-ZEqlUVZR67tJEZpHNmmohvEHbghJyGhFSyQWD3N6Js3Tw-hSwITQkh6k04AgCYxO0IjklCIeJLkx2gEWcwiSoCcojPvnweIQjpCbwuzMcG0FXZaVLoNWNpW9RvbehzsMAVnG2xa6yrRGokbK9TAmxZPm-Xr5_vH43yF693aGYVL0Yv0WPZuQSscamdfqhpvRWdd1NXC6_6wNE1wYvhxjk5K0Xh9cdAxerqdr2b30WJ59zCbLiJJkzxEOQDnmgCjmjLJAATJGZNKcVAMiMzXueKcy5isWVYyQbMMUpnwhPBSllTEY3S195XOeu90WXTObITbFQSKobgiLQ7F9ez1nvXShO-UP_DWul-w6FT5H_zX-QsuiH7f</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Limiting reagent conditions to control inorganic loading in AlOx–PET hybrid fabrics created through vapor-phase infiltration</title><source>American Institute of Physics (AIP) Journals</source><source>Alma/SFX Local Collection</source><creator>McGuinness, Emily K. ; Manno, Haley V. ; Pyronneau, Kira ; Jean, Benjamin C. ; McClelland, Nicole R. ; Losego, Mark D.</creator><creatorcontrib>McGuinness, Emily K. ; Manno, Haley V. ; Pyronneau, Kira ; Jean, Benjamin C. ; McClelland, Nicole R. ; Losego, Mark D.</creatorcontrib><description>In this work, the vapor-phase infiltration (VPI) of polyethylene terephthalate (PET) fabrics with trimethylaluminum (TMA) and coreaction with water vapor is explored as a function of limiting TMA reagent conditions versus excess TMA reagent conditions at two infiltration temperatures. TMA is found to sorb rapidly into PET fibers, with a significant pressure drop occurring within seconds of TMA exposure. When large quantities of polymer are placed within the chamber, minimal residual precursor remains at the end of the pressure drop. This rapid and complete sorption facilitates the control of inorganic loading by purposely delivering a limited quantity of the TMA reagent. The inorganic loading for this system scales linearly with a Precursor:C=O molar ratio of up to 0.35 at 140 °C and 0.5 at 80 °C. After this point, inorganic loading is constant irrespective of the amount of additional TMA reagent supplied. The SEM analysis of pyrolyzed hybrids indicates that this is likely due to the formation of an impermeable layer to subsequent infiltration as the core of the fibers remains uninfiltrated. The Precursor:C=O molar ratio in the subsaturation regime is found to tune the hybrid fabric morphology and material properties such as the optical properties of the fabric. Overall, this work demonstrates how a reagent-limited processing route can control the inorganic loading in VPI synthesized hybrid materials in a simpler manner than trying to control kinetics-driven methods.</description><identifier>ISSN: 0734-2101</identifier><identifier>EISSN: 1520-8559</identifier><identifier>DOI: 10.1116/6.0002534</identifier><identifier>CODEN: JVTAD6</identifier><language>eng</language><ispartof>Journal of vacuum science &amp; technology. A, Vacuum, surfaces, and films, 2023-05, Vol.41 (3)</ispartof><rights>Author(s)</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c259t-90088e1042e24c400a1944cdd80d401c9b9d888c31b47f4a27706c58518fcf2a3</cites><orcidid>0000-0002-9810-9834 ; 0000-0003-4896-248X ; 0009-0009-6386-4838 ; 0000-0002-2944-6829</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,4498,27901,27902</link.rule.ids></links><search><creatorcontrib>McGuinness, Emily K.</creatorcontrib><creatorcontrib>Manno, Haley V.</creatorcontrib><creatorcontrib>Pyronneau, Kira</creatorcontrib><creatorcontrib>Jean, Benjamin C.</creatorcontrib><creatorcontrib>McClelland, Nicole R.</creatorcontrib><creatorcontrib>Losego, Mark D.</creatorcontrib><title>Limiting reagent conditions to control inorganic loading in AlOx–PET hybrid fabrics created through vapor-phase infiltration</title><title>Journal of vacuum science &amp; technology. A, Vacuum, surfaces, and films</title><description>In this work, the vapor-phase infiltration (VPI) of polyethylene terephthalate (PET) fabrics with trimethylaluminum (TMA) and coreaction with water vapor is explored as a function of limiting TMA reagent conditions versus excess TMA reagent conditions at two infiltration temperatures. TMA is found to sorb rapidly into PET fibers, with a significant pressure drop occurring within seconds of TMA exposure. When large quantities of polymer are placed within the chamber, minimal residual precursor remains at the end of the pressure drop. This rapid and complete sorption facilitates the control of inorganic loading by purposely delivering a limited quantity of the TMA reagent. The inorganic loading for this system scales linearly with a Precursor:C=O molar ratio of up to 0.35 at 140 °C and 0.5 at 80 °C. After this point, inorganic loading is constant irrespective of the amount of additional TMA reagent supplied. The SEM analysis of pyrolyzed hybrids indicates that this is likely due to the formation of an impermeable layer to subsequent infiltration as the core of the fibers remains uninfiltrated. The Precursor:C=O molar ratio in the subsaturation regime is found to tune the hybrid fabric morphology and material properties such as the optical properties of the fabric. Overall, this work demonstrates how a reagent-limited processing route can control the inorganic loading in VPI synthesized hybrid materials in a simpler manner than trying to control kinetics-driven methods.</description><issn>0734-2101</issn><issn>1520-8559</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EEqWw4AbegpQydpzEWVZV-ZEqlUVZR67tJEZpHNmmohvEHbghJyGhFSyQWD3N6Js3Tw-hSwITQkh6k04AgCYxO0IjklCIeJLkx2gEWcwiSoCcojPvnweIQjpCbwuzMcG0FXZaVLoNWNpW9RvbehzsMAVnG2xa6yrRGokbK9TAmxZPm-Xr5_vH43yF693aGYVL0Yv0WPZuQSscamdfqhpvRWdd1NXC6_6wNE1wYvhxjk5K0Xh9cdAxerqdr2b30WJ59zCbLiJJkzxEOQDnmgCjmjLJAATJGZNKcVAMiMzXueKcy5isWVYyQbMMUpnwhPBSllTEY3S195XOeu90WXTObITbFQSKobgiLQ7F9ez1nvXShO-UP_DWul-w6FT5H_zX-QsuiH7f</recordid><startdate>202305</startdate><enddate>202305</enddate><creator>McGuinness, Emily K.</creator><creator>Manno, Haley V.</creator><creator>Pyronneau, Kira</creator><creator>Jean, Benjamin C.</creator><creator>McClelland, Nicole R.</creator><creator>Losego, Mark D.</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9810-9834</orcidid><orcidid>https://orcid.org/0000-0003-4896-248X</orcidid><orcidid>https://orcid.org/0009-0009-6386-4838</orcidid><orcidid>https://orcid.org/0000-0002-2944-6829</orcidid></search><sort><creationdate>202305</creationdate><title>Limiting reagent conditions to control inorganic loading in AlOx–PET hybrid fabrics created through vapor-phase infiltration</title><author>McGuinness, Emily K. ; Manno, Haley V. ; Pyronneau, Kira ; Jean, Benjamin C. ; McClelland, Nicole R. ; Losego, Mark D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-90088e1042e24c400a1944cdd80d401c9b9d888c31b47f4a27706c58518fcf2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McGuinness, Emily K.</creatorcontrib><creatorcontrib>Manno, Haley V.</creatorcontrib><creatorcontrib>Pyronneau, Kira</creatorcontrib><creatorcontrib>Jean, Benjamin C.</creatorcontrib><creatorcontrib>McClelland, Nicole R.</creatorcontrib><creatorcontrib>Losego, Mark D.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of vacuum science &amp; technology. A, Vacuum, surfaces, and films</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McGuinness, Emily K.</au><au>Manno, Haley V.</au><au>Pyronneau, Kira</au><au>Jean, Benjamin C.</au><au>McClelland, Nicole R.</au><au>Losego, Mark D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Limiting reagent conditions to control inorganic loading in AlOx–PET hybrid fabrics created through vapor-phase infiltration</atitle><jtitle>Journal of vacuum science &amp; technology. A, Vacuum, surfaces, and films</jtitle><date>2023-05</date><risdate>2023</risdate><volume>41</volume><issue>3</issue><issn>0734-2101</issn><eissn>1520-8559</eissn><coden>JVTAD6</coden><abstract>In this work, the vapor-phase infiltration (VPI) of polyethylene terephthalate (PET) fabrics with trimethylaluminum (TMA) and coreaction with water vapor is explored as a function of limiting TMA reagent conditions versus excess TMA reagent conditions at two infiltration temperatures. TMA is found to sorb rapidly into PET fibers, with a significant pressure drop occurring within seconds of TMA exposure. When large quantities of polymer are placed within the chamber, minimal residual precursor remains at the end of the pressure drop. This rapid and complete sorption facilitates the control of inorganic loading by purposely delivering a limited quantity of the TMA reagent. The inorganic loading for this system scales linearly with a Precursor:C=O molar ratio of up to 0.35 at 140 °C and 0.5 at 80 °C. After this point, inorganic loading is constant irrespective of the amount of additional TMA reagent supplied. The SEM analysis of pyrolyzed hybrids indicates that this is likely due to the formation of an impermeable layer to subsequent infiltration as the core of the fibers remains uninfiltrated. The Precursor:C=O molar ratio in the subsaturation regime is found to tune the hybrid fabric morphology and material properties such as the optical properties of the fabric. Overall, this work demonstrates how a reagent-limited processing route can control the inorganic loading in VPI synthesized hybrid materials in a simpler manner than trying to control kinetics-driven methods.</abstract><doi>10.1116/6.0002534</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-9810-9834</orcidid><orcidid>https://orcid.org/0000-0003-4896-248X</orcidid><orcidid>https://orcid.org/0009-0009-6386-4838</orcidid><orcidid>https://orcid.org/0000-0002-2944-6829</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0734-2101
ispartof Journal of vacuum science & technology. A, Vacuum, surfaces, and films, 2023-05, Vol.41 (3)
issn 0734-2101
1520-8559
language eng
recordid cdi_crossref_primary_10_1116_6_0002534
source American Institute of Physics (AIP) Journals; Alma/SFX Local Collection
title Limiting reagent conditions to control inorganic loading in AlOx–PET hybrid fabrics created through vapor-phase infiltration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T18%3A46%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Limiting%20reagent%20conditions%20to%20control%20inorganic%20loading%20in%20AlOx%E2%80%93PET%20hybrid%20fabrics%20created%20through%20vapor-phase%20infiltration&rft.jtitle=Journal%20of%20vacuum%20science%20&%20technology.%20A,%20Vacuum,%20surfaces,%20and%20films&rft.au=McGuinness,%20Emily%20K.&rft.date=2023-05&rft.volume=41&rft.issue=3&rft.issn=0734-2101&rft.eissn=1520-8559&rft.coden=JVTAD6&rft_id=info:doi/10.1116/6.0002534&rft_dat=%3Cscitation_cross%3Escitation_primary_10_1116_6_0002534%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true