Secondary ion mass spectrometry depth profiling of ultrashallow phosphorous in silicon

High-precision quantitative secondary ion mass spectrometry (SIMS) trace analyses of ultrashallow 31 P distributions in Si (i.e., junction depths of 50 nm or less) require the ability to eliminate the 30 Si 1 H mass interference while simultaneously minimizing primary ion impact energy and maximizin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 2000-01, Vol.18 (1), p.509-513
Hauptverfasser: Loesing, R., Guryanov, G. M., Hunter, J. L., Griffis, D. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 513
container_issue 1
container_start_page 509
container_title Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures
container_volume 18
creator Loesing, R.
Guryanov, G. M.
Hunter, J. L.
Griffis, D. P.
description High-precision quantitative secondary ion mass spectrometry (SIMS) trace analyses of ultrashallow 31 P distributions in Si (i.e., junction depths of 50 nm or less) require the ability to eliminate the 30 Si 1 H mass interference while simultaneously minimizing primary ion impact energy and maximizing sensitivity. Elimination of 30 Si 1 H requires a relatively high mass resolution SIMS instrument such as the Cameca IMS-6f used in this work. A range of Cs + primary ion energies ranging from 9.5 to 1.6 keV was investigated to determine which provided the best depth resolution as measured by decay length for ultrashallow depth profiles of 2 keV P in Si. Improvements (or lack thereof) in decay length as the primary ion impact energy was reduced were correlated with crater bottom roughness measurements. Changes in the ion yields of P and Si resulting from both the appreciable fraction of the analyzed depth made up of the surface native oxide and also from the depth required for the primary ion yield enhancing Cs + to reach a constant level were also investigated utilizing bulk-doped P in Si. The resulting ion yield transients obtained were then used to generate an empirical correction function with the aim of improving the quantitative accuracy of the ultrashallow depth profile selected as having the minimum decay length obtained in this work. Finally, improvements in the P detection limit provided by optimization of the secondary ion postacceleration system are discussed.
doi_str_mv 10.1116/1.591222
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1116_1_591222</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>745647506</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-f36d13a3618b23bc45a1e5c72233bedd952ba083639c266e695701121bc38293</originalsourceid><addsrcrecordid>eNp90E1LxDAQBuAgCq6r4E_ITT1UM0mTtkdZ_IIFDy7iLaRp6la6Tc1kFf-9kcpeBA9hIDy8zLyEnAK7BAB1BZeyAs75HpmB5CwrpSr2yYwVIs84wMshOUJ8Y4wpKcSMPD8564fGhC_a-YFuDCLF0dkY_MbF9Nu4Ma7pGHzb9d3wSn1Lt30MBtem7_0nHdce0wt-i7QbKCaVAo_JQWt6dCe_c05WtzerxX22fLx7WFwvMyu4jFkrVAPCCAVlzUVtc2nASVtwLkTtmqaSvDasFEpUlivlVCULBsChtqLklZiTsyk27fe-dRj1pkPr-t4MLi2ki1yqvJBMJXk-SRs8YnCtHkO3SWdrYPqnOA16Ki7Ri4mi7aKJqZad_fBh5_TYtP_ZP7nfCdp8Sw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>745647506</pqid></control><display><type>article</type><title>Secondary ion mass spectrometry depth profiling of ultrashallow phosphorous in silicon</title><source>AIP Journals Complete</source><creator>Loesing, R. ; Guryanov, G. M. ; Hunter, J. L. ; Griffis, D. P.</creator><creatorcontrib>Loesing, R. ; Guryanov, G. M. ; Hunter, J. L. ; Griffis, D. P.</creatorcontrib><description>High-precision quantitative secondary ion mass spectrometry (SIMS) trace analyses of ultrashallow 31 P distributions in Si (i.e., junction depths of 50 nm or less) require the ability to eliminate the 30 Si 1 H mass interference while simultaneously minimizing primary ion impact energy and maximizing sensitivity. Elimination of 30 Si 1 H requires a relatively high mass resolution SIMS instrument such as the Cameca IMS-6f used in this work. A range of Cs + primary ion energies ranging from 9.5 to 1.6 keV was investigated to determine which provided the best depth resolution as measured by decay length for ultrashallow depth profiles of 2 keV P in Si. Improvements (or lack thereof) in decay length as the primary ion impact energy was reduced were correlated with crater bottom roughness measurements. Changes in the ion yields of P and Si resulting from both the appreciable fraction of the analyzed depth made up of the surface native oxide and also from the depth required for the primary ion yield enhancing Cs + to reach a constant level were also investigated utilizing bulk-doped P in Si. The resulting ion yield transients obtained were then used to generate an empirical correction function with the aim of improving the quantitative accuracy of the ultrashallow depth profile selected as having the minimum decay length obtained in this work. Finally, improvements in the P detection limit provided by optimization of the secondary ion postacceleration system are discussed.</description><identifier>ISSN: 0734-211X</identifier><identifier>ISSN: 1071-1023</identifier><identifier>EISSN: 1520-8567</identifier><identifier>DOI: 10.1116/1.591222</identifier><identifier>CODEN: JVTBD9</identifier><language>eng</language><subject>Ion implantation ; Phosphorus ; Silicon ; Surface roughness</subject><ispartof>Journal of Vacuum Science &amp; Technology B: Microelectronics and Nanometer Structures, 2000-01, Vol.18 (1), p.509-513</ispartof><rights>American Vacuum Society</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-f36d13a3618b23bc45a1e5c72233bedd952ba083639c266e695701121bc38293</citedby><cites>FETCH-LOGICAL-c325t-f36d13a3618b23bc45a1e5c72233bedd952ba083639c266e695701121bc38293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925</link.rule.ids></links><search><creatorcontrib>Loesing, R.</creatorcontrib><creatorcontrib>Guryanov, G. M.</creatorcontrib><creatorcontrib>Hunter, J. L.</creatorcontrib><creatorcontrib>Griffis, D. P.</creatorcontrib><title>Secondary ion mass spectrometry depth profiling of ultrashallow phosphorous in silicon</title><title>Journal of Vacuum Science &amp; Technology B: Microelectronics and Nanometer Structures</title><description>High-precision quantitative secondary ion mass spectrometry (SIMS) trace analyses of ultrashallow 31 P distributions in Si (i.e., junction depths of 50 nm or less) require the ability to eliminate the 30 Si 1 H mass interference while simultaneously minimizing primary ion impact energy and maximizing sensitivity. Elimination of 30 Si 1 H requires a relatively high mass resolution SIMS instrument such as the Cameca IMS-6f used in this work. A range of Cs + primary ion energies ranging from 9.5 to 1.6 keV was investigated to determine which provided the best depth resolution as measured by decay length for ultrashallow depth profiles of 2 keV P in Si. Improvements (or lack thereof) in decay length as the primary ion impact energy was reduced were correlated with crater bottom roughness measurements. Changes in the ion yields of P and Si resulting from both the appreciable fraction of the analyzed depth made up of the surface native oxide and also from the depth required for the primary ion yield enhancing Cs + to reach a constant level were also investigated utilizing bulk-doped P in Si. The resulting ion yield transients obtained were then used to generate an empirical correction function with the aim of improving the quantitative accuracy of the ultrashallow depth profile selected as having the minimum decay length obtained in this work. Finally, improvements in the P detection limit provided by optimization of the secondary ion postacceleration system are discussed.</description><subject>Ion implantation</subject><subject>Phosphorus</subject><subject>Silicon</subject><subject>Surface roughness</subject><issn>0734-211X</issn><issn>1071-1023</issn><issn>1520-8567</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNp90E1LxDAQBuAgCq6r4E_ITT1UM0mTtkdZ_IIFDy7iLaRp6la6Tc1kFf-9kcpeBA9hIDy8zLyEnAK7BAB1BZeyAs75HpmB5CwrpSr2yYwVIs84wMshOUJ8Y4wpKcSMPD8564fGhC_a-YFuDCLF0dkY_MbF9Nu4Ma7pGHzb9d3wSn1Lt30MBtem7_0nHdce0wt-i7QbKCaVAo_JQWt6dCe_c05WtzerxX22fLx7WFwvMyu4jFkrVAPCCAVlzUVtc2nASVtwLkTtmqaSvDasFEpUlivlVCULBsChtqLklZiTsyk27fe-dRj1pkPr-t4MLi2ki1yqvJBMJXk-SRs8YnCtHkO3SWdrYPqnOA16Ki7Ri4mi7aKJqZad_fBh5_TYtP_ZP7nfCdp8Sw</recordid><startdate>200001</startdate><enddate>200001</enddate><creator>Loesing, R.</creator><creator>Guryanov, G. M.</creator><creator>Hunter, J. L.</creator><creator>Griffis, D. P.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7TC</scope></search><sort><creationdate>200001</creationdate><title>Secondary ion mass spectrometry depth profiling of ultrashallow phosphorous in silicon</title><author>Loesing, R. ; Guryanov, G. M. ; Hunter, J. L. ; Griffis, D. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-f36d13a3618b23bc45a1e5c72233bedd952ba083639c266e695701121bc38293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Ion implantation</topic><topic>Phosphorus</topic><topic>Silicon</topic><topic>Surface roughness</topic><toplevel>online_resources</toplevel><creatorcontrib>Loesing, R.</creatorcontrib><creatorcontrib>Guryanov, G. M.</creatorcontrib><creatorcontrib>Hunter, J. L.</creatorcontrib><creatorcontrib>Griffis, D. P.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>Journal of Vacuum Science &amp; Technology B: Microelectronics and Nanometer Structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Loesing, R.</au><au>Guryanov, G. M.</au><au>Hunter, J. L.</au><au>Griffis, D. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Secondary ion mass spectrometry depth profiling of ultrashallow phosphorous in silicon</atitle><jtitle>Journal of Vacuum Science &amp; Technology B: Microelectronics and Nanometer Structures</jtitle><date>2000-01</date><risdate>2000</risdate><volume>18</volume><issue>1</issue><spage>509</spage><epage>513</epage><pages>509-513</pages><issn>0734-211X</issn><issn>1071-1023</issn><eissn>1520-8567</eissn><coden>JVTBD9</coden><abstract>High-precision quantitative secondary ion mass spectrometry (SIMS) trace analyses of ultrashallow 31 P distributions in Si (i.e., junction depths of 50 nm or less) require the ability to eliminate the 30 Si 1 H mass interference while simultaneously minimizing primary ion impact energy and maximizing sensitivity. Elimination of 30 Si 1 H requires a relatively high mass resolution SIMS instrument such as the Cameca IMS-6f used in this work. A range of Cs + primary ion energies ranging from 9.5 to 1.6 keV was investigated to determine which provided the best depth resolution as measured by decay length for ultrashallow depth profiles of 2 keV P in Si. Improvements (or lack thereof) in decay length as the primary ion impact energy was reduced were correlated with crater bottom roughness measurements. Changes in the ion yields of P and Si resulting from both the appreciable fraction of the analyzed depth made up of the surface native oxide and also from the depth required for the primary ion yield enhancing Cs + to reach a constant level were also investigated utilizing bulk-doped P in Si. The resulting ion yield transients obtained were then used to generate an empirical correction function with the aim of improving the quantitative accuracy of the ultrashallow depth profile selected as having the minimum decay length obtained in this work. Finally, improvements in the P detection limit provided by optimization of the secondary ion postacceleration system are discussed.</abstract><doi>10.1116/1.591222</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0734-211X
ispartof Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 2000-01, Vol.18 (1), p.509-513
issn 0734-211X
1071-1023
1520-8567
language eng
recordid cdi_crossref_primary_10_1116_1_591222
source AIP Journals Complete
subjects Ion implantation
Phosphorus
Silicon
Surface roughness
title Secondary ion mass spectrometry depth profiling of ultrashallow phosphorous in silicon
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A43%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Secondary%20ion%20mass%20spectrometry%20depth%20profiling%20of%20ultrashallow%20phosphorous%20in%20silicon&rft.jtitle=Journal%20of%20Vacuum%20Science%20&%20Technology%20B:%20Microelectronics%20and%20Nanometer%20Structures&rft.au=Loesing,%20R.&rft.date=2000-01&rft.volume=18&rft.issue=1&rft.spage=509&rft.epage=513&rft.pages=509-513&rft.issn=0734-211X&rft.eissn=1520-8567&rft.coden=JVTBD9&rft_id=info:doi/10.1116/1.591222&rft_dat=%3Cproquest_cross%3E745647506%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=745647506&rft_id=info:pmid/&rfr_iscdi=true