Air bearing collision dynamics

The dynamic response of sliders with different air bearing designs, following a controlled collision with an asperity, is reported. Systematic differences are found between air bearings with continuous positive pressure bearing surfaces running from the leading to trailing edge of the slider (so-cal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films Surfaces, and Films, 2000-07, Vol.18 (4), p.2027-2032
Hauptverfasser: Stupp, Steven E., Blanco, Richard J., Strom, Brian D., Chen, Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2032
container_issue 4
container_start_page 2027
container_title Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films
container_volume 18
creator Stupp, Steven E.
Blanco, Richard J.
Strom, Brian D.
Chen, Li
description The dynamic response of sliders with different air bearing designs, following a controlled collision with an asperity, is reported. Systematic differences are found between air bearings with continuous positive pressure bearing surfaces running from the leading to trailing edge of the slider (so-called continuous rail designs) and some of those with separate positive pressure bearing features at the leading and trailing edges of the slider (so-called island-type designs). Particular island-type designs are found to be more susceptible to flying height modulation during the collision and, under certain conditions, appear to exhibit at least one additional head-disk contact after the slider has moved past the asperity. The results have consequences for reliability, especially in systems where the slider flies below the disk glide height.
doi_str_mv 10.1116/1.582467
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1116_1_582467</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>745712299</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-ec70cbb0cb42f52f7bcf22f333bb4395da2be3e2e368810656f5e84f6ee0e8253</originalsourceid><addsrcrecordid>eNqd0M1KxDAUBeAgCtZR8AmkO3XRMblpknY5DP7BgBtdhyS9kUj_TDrCvL2Vig_g4nA2HxfuIeSS0TVjTN6xtaiglOqIZEwALSoh6mOSUcXLAhhlp-QspQ9KKQCVGbnahJhbNDH077kb2jakMPR5c-hNF1w6JyfetAkvfntF3h7uX7dPxe7l8Xm72RWOg5gKdIo6a-eU4AV4ZZ0H8Jxza0tei8aARY6AXFYVo1JIL7AqvUSkWIHgK3K93B3j8LnHNOkuJIdta3oc9kmrUigGUNezvFmki0NKEb0eY-hMPGhG9c8CmullgZneLjS5MJlp_utf9muIf06PjeffDYxn0g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>745712299</pqid></control><display><type>article</type><title>Air bearing collision dynamics</title><source>AIP Journals Complete</source><creator>Stupp, Steven E. ; Blanco, Richard J. ; Strom, Brian D. ; Chen, Li</creator><creatorcontrib>Stupp, Steven E. ; Blanco, Richard J. ; Strom, Brian D. ; Chen, Li</creatorcontrib><description>The dynamic response of sliders with different air bearing designs, following a controlled collision with an asperity, is reported. Systematic differences are found between air bearings with continuous positive pressure bearing surfaces running from the leading to trailing edge of the slider (so-called continuous rail designs) and some of those with separate positive pressure bearing features at the leading and trailing edges of the slider (so-called island-type designs). Particular island-type designs are found to be more susceptible to flying height modulation during the collision and, under certain conditions, appear to exhibit at least one additional head-disk contact after the slider has moved past the asperity. The results have consequences for reliability, especially in systems where the slider flies below the disk glide height.</description><identifier>ISSN: 0734-2101</identifier><identifier>EISSN: 1520-8559</identifier><identifier>DOI: 10.1116/1.582467</identifier><identifier>CODEN: JVTAD6</identifier><language>eng</language><subject>Dynamics ; Magnetic disk storage ; Magnetic heads</subject><ispartof>Journal of Vacuum Science &amp; Technology A: Vacuum, Surfaces, and Films, 2000-07, Vol.18 (4), p.2027-2032</ispartof><rights>American Vacuum Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-ec70cbb0cb42f52f7bcf22f333bb4395da2be3e2e368810656f5e84f6ee0e8253</citedby><cites>FETCH-LOGICAL-c325t-ec70cbb0cb42f52f7bcf22f333bb4395da2be3e2e368810656f5e84f6ee0e8253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902</link.rule.ids></links><search><creatorcontrib>Stupp, Steven E.</creatorcontrib><creatorcontrib>Blanco, Richard J.</creatorcontrib><creatorcontrib>Strom, Brian D.</creatorcontrib><creatorcontrib>Chen, Li</creatorcontrib><title>Air bearing collision dynamics</title><title>Journal of Vacuum Science &amp; Technology A: Vacuum, Surfaces, and Films</title><description>The dynamic response of sliders with different air bearing designs, following a controlled collision with an asperity, is reported. Systematic differences are found between air bearings with continuous positive pressure bearing surfaces running from the leading to trailing edge of the slider (so-called continuous rail designs) and some of those with separate positive pressure bearing features at the leading and trailing edges of the slider (so-called island-type designs). Particular island-type designs are found to be more susceptible to flying height modulation during the collision and, under certain conditions, appear to exhibit at least one additional head-disk contact after the slider has moved past the asperity. The results have consequences for reliability, especially in systems where the slider flies below the disk glide height.</description><subject>Dynamics</subject><subject>Magnetic disk storage</subject><subject>Magnetic heads</subject><issn>0734-2101</issn><issn>1520-8559</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqd0M1KxDAUBeAgCtZR8AmkO3XRMblpknY5DP7BgBtdhyS9kUj_TDrCvL2Vig_g4nA2HxfuIeSS0TVjTN6xtaiglOqIZEwALSoh6mOSUcXLAhhlp-QspQ9KKQCVGbnahJhbNDH077kb2jakMPR5c-hNF1w6JyfetAkvfntF3h7uX7dPxe7l8Xm72RWOg5gKdIo6a-eU4AV4ZZ0H8Jxza0tei8aARY6AXFYVo1JIL7AqvUSkWIHgK3K93B3j8LnHNOkuJIdta3oc9kmrUigGUNezvFmki0NKEb0eY-hMPGhG9c8CmullgZneLjS5MJlp_utf9muIf06PjeffDYxn0g</recordid><startdate>200007</startdate><enddate>200007</enddate><creator>Stupp, Steven E.</creator><creator>Blanco, Richard J.</creator><creator>Strom, Brian D.</creator><creator>Chen, Li</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7TC</scope></search><sort><creationdate>200007</creationdate><title>Air bearing collision dynamics</title><author>Stupp, Steven E. ; Blanco, Richard J. ; Strom, Brian D. ; Chen, Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-ec70cbb0cb42f52f7bcf22f333bb4395da2be3e2e368810656f5e84f6ee0e8253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Dynamics</topic><topic>Magnetic disk storage</topic><topic>Magnetic heads</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stupp, Steven E.</creatorcontrib><creatorcontrib>Blanco, Richard J.</creatorcontrib><creatorcontrib>Strom, Brian D.</creatorcontrib><creatorcontrib>Chen, Li</creatorcontrib><collection>CrossRef</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>Journal of Vacuum Science &amp; Technology A: Vacuum, Surfaces, and Films</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stupp, Steven E.</au><au>Blanco, Richard J.</au><au>Strom, Brian D.</au><au>Chen, Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Air bearing collision dynamics</atitle><jtitle>Journal of Vacuum Science &amp; Technology A: Vacuum, Surfaces, and Films</jtitle><date>2000-07</date><risdate>2000</risdate><volume>18</volume><issue>4</issue><spage>2027</spage><epage>2032</epage><pages>2027-2032</pages><issn>0734-2101</issn><eissn>1520-8559</eissn><coden>JVTAD6</coden><abstract>The dynamic response of sliders with different air bearing designs, following a controlled collision with an asperity, is reported. Systematic differences are found between air bearings with continuous positive pressure bearing surfaces running from the leading to trailing edge of the slider (so-called continuous rail designs) and some of those with separate positive pressure bearing features at the leading and trailing edges of the slider (so-called island-type designs). Particular island-type designs are found to be more susceptible to flying height modulation during the collision and, under certain conditions, appear to exhibit at least one additional head-disk contact after the slider has moved past the asperity. The results have consequences for reliability, especially in systems where the slider flies below the disk glide height.</abstract><doi>10.1116/1.582467</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0734-2101
ispartof Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2000-07, Vol.18 (4), p.2027-2032
issn 0734-2101
1520-8559
language eng
recordid cdi_crossref_primary_10_1116_1_582467
source AIP Journals Complete
subjects Dynamics
Magnetic disk storage
Magnetic heads
title Air bearing collision dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T07%3A46%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Air%20bearing%20collision%20dynamics&rft.jtitle=Journal%20of%20Vacuum%20Science%20&%20Technology%20A:%20Vacuum,%20Surfaces,%20and%20Films&rft.au=Stupp,%20Steven%20E.&rft.date=2000-07&rft.volume=18&rft.issue=4&rft.spage=2027&rft.epage=2032&rft.pages=2027-2032&rft.issn=0734-2101&rft.eissn=1520-8559&rft.coden=JVTAD6&rft_id=info:doi/10.1116/1.582467&rft_dat=%3Cproquest_cross%3E745712299%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=745712299&rft_id=info:pmid/&rfr_iscdi=true