Air bearing collision dynamics
The dynamic response of sliders with different air bearing designs, following a controlled collision with an asperity, is reported. Systematic differences are found between air bearings with continuous positive pressure bearing surfaces running from the leading to trailing edge of the slider (so-cal...
Gespeichert in:
Veröffentlicht in: | Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films Surfaces, and Films, 2000-07, Vol.18 (4), p.2027-2032 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2032 |
---|---|
container_issue | 4 |
container_start_page | 2027 |
container_title | Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films |
container_volume | 18 |
creator | Stupp, Steven E. Blanco, Richard J. Strom, Brian D. Chen, Li |
description | The dynamic response of sliders with different air bearing designs, following a controlled collision with an asperity, is reported. Systematic differences are found between air bearings with continuous positive pressure bearing surfaces running from the leading to trailing edge of the slider (so-called continuous rail designs) and some of those with separate positive pressure bearing features at the leading and trailing edges of the slider (so-called island-type designs). Particular island-type designs are found to be more susceptible to flying height modulation during the collision and, under certain conditions, appear to exhibit at least one additional head-disk contact after the slider has moved past the asperity. The results have consequences for reliability, especially in systems where the slider flies below the disk glide height. |
doi_str_mv | 10.1116/1.582467 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1116_1_582467</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>745712299</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-ec70cbb0cb42f52f7bcf22f333bb4395da2be3e2e368810656f5e84f6ee0e8253</originalsourceid><addsrcrecordid>eNqd0M1KxDAUBeAgCtZR8AmkO3XRMblpknY5DP7BgBtdhyS9kUj_TDrCvL2Vig_g4nA2HxfuIeSS0TVjTN6xtaiglOqIZEwALSoh6mOSUcXLAhhlp-QspQ9KKQCVGbnahJhbNDH077kb2jakMPR5c-hNF1w6JyfetAkvfntF3h7uX7dPxe7l8Xm72RWOg5gKdIo6a-eU4AV4ZZ0H8Jxza0tei8aARY6AXFYVo1JIL7AqvUSkWIHgK3K93B3j8LnHNOkuJIdta3oc9kmrUigGUNezvFmki0NKEb0eY-hMPGhG9c8CmullgZneLjS5MJlp_utf9muIf06PjeffDYxn0g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>745712299</pqid></control><display><type>article</type><title>Air bearing collision dynamics</title><source>AIP Journals Complete</source><creator>Stupp, Steven E. ; Blanco, Richard J. ; Strom, Brian D. ; Chen, Li</creator><creatorcontrib>Stupp, Steven E. ; Blanco, Richard J. ; Strom, Brian D. ; Chen, Li</creatorcontrib><description>The dynamic response of sliders with different air bearing designs, following a controlled collision with an asperity, is reported. Systematic differences are found between air bearings with continuous positive pressure bearing surfaces running from the leading to trailing edge of the slider (so-called continuous rail designs) and some of those with separate positive pressure bearing features at the leading and trailing edges of the slider (so-called island-type designs). Particular island-type designs are found to be more susceptible to flying height modulation during the collision and, under certain conditions, appear to exhibit at least one additional head-disk contact after the slider has moved past the asperity. The results have consequences for reliability, especially in systems where the slider flies below the disk glide height.</description><identifier>ISSN: 0734-2101</identifier><identifier>EISSN: 1520-8559</identifier><identifier>DOI: 10.1116/1.582467</identifier><identifier>CODEN: JVTAD6</identifier><language>eng</language><subject>Dynamics ; Magnetic disk storage ; Magnetic heads</subject><ispartof>Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2000-07, Vol.18 (4), p.2027-2032</ispartof><rights>American Vacuum Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-ec70cbb0cb42f52f7bcf22f333bb4395da2be3e2e368810656f5e84f6ee0e8253</citedby><cites>FETCH-LOGICAL-c325t-ec70cbb0cb42f52f7bcf22f333bb4395da2be3e2e368810656f5e84f6ee0e8253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902</link.rule.ids></links><search><creatorcontrib>Stupp, Steven E.</creatorcontrib><creatorcontrib>Blanco, Richard J.</creatorcontrib><creatorcontrib>Strom, Brian D.</creatorcontrib><creatorcontrib>Chen, Li</creatorcontrib><title>Air bearing collision dynamics</title><title>Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films</title><description>The dynamic response of sliders with different air bearing designs, following a controlled collision with an asperity, is reported. Systematic differences are found between air bearings with continuous positive pressure bearing surfaces running from the leading to trailing edge of the slider (so-called continuous rail designs) and some of those with separate positive pressure bearing features at the leading and trailing edges of the slider (so-called island-type designs). Particular island-type designs are found to be more susceptible to flying height modulation during the collision and, under certain conditions, appear to exhibit at least one additional head-disk contact after the slider has moved past the asperity. The results have consequences for reliability, especially in systems where the slider flies below the disk glide height.</description><subject>Dynamics</subject><subject>Magnetic disk storage</subject><subject>Magnetic heads</subject><issn>0734-2101</issn><issn>1520-8559</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqd0M1KxDAUBeAgCtZR8AmkO3XRMblpknY5DP7BgBtdhyS9kUj_TDrCvL2Vig_g4nA2HxfuIeSS0TVjTN6xtaiglOqIZEwALSoh6mOSUcXLAhhlp-QspQ9KKQCVGbnahJhbNDH077kb2jakMPR5c-hNF1w6JyfetAkvfntF3h7uX7dPxe7l8Xm72RWOg5gKdIo6a-eU4AV4ZZ0H8Jxza0tei8aARY6AXFYVo1JIL7AqvUSkWIHgK3K93B3j8LnHNOkuJIdta3oc9kmrUigGUNezvFmki0NKEb0eY-hMPGhG9c8CmullgZneLjS5MJlp_utf9muIf06PjeffDYxn0g</recordid><startdate>200007</startdate><enddate>200007</enddate><creator>Stupp, Steven E.</creator><creator>Blanco, Richard J.</creator><creator>Strom, Brian D.</creator><creator>Chen, Li</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7TC</scope></search><sort><creationdate>200007</creationdate><title>Air bearing collision dynamics</title><author>Stupp, Steven E. ; Blanco, Richard J. ; Strom, Brian D. ; Chen, Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-ec70cbb0cb42f52f7bcf22f333bb4395da2be3e2e368810656f5e84f6ee0e8253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Dynamics</topic><topic>Magnetic disk storage</topic><topic>Magnetic heads</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stupp, Steven E.</creatorcontrib><creatorcontrib>Blanco, Richard J.</creatorcontrib><creatorcontrib>Strom, Brian D.</creatorcontrib><creatorcontrib>Chen, Li</creatorcontrib><collection>CrossRef</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stupp, Steven E.</au><au>Blanco, Richard J.</au><au>Strom, Brian D.</au><au>Chen, Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Air bearing collision dynamics</atitle><jtitle>Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films</jtitle><date>2000-07</date><risdate>2000</risdate><volume>18</volume><issue>4</issue><spage>2027</spage><epage>2032</epage><pages>2027-2032</pages><issn>0734-2101</issn><eissn>1520-8559</eissn><coden>JVTAD6</coden><abstract>The dynamic response of sliders with different air bearing designs, following a controlled collision with an asperity, is reported. Systematic differences are found between air bearings with continuous positive pressure bearing surfaces running from the leading to trailing edge of the slider (so-called continuous rail designs) and some of those with separate positive pressure bearing features at the leading and trailing edges of the slider (so-called island-type designs). Particular island-type designs are found to be more susceptible to flying height modulation during the collision and, under certain conditions, appear to exhibit at least one additional head-disk contact after the slider has moved past the asperity. The results have consequences for reliability, especially in systems where the slider flies below the disk glide height.</abstract><doi>10.1116/1.582467</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0734-2101 |
ispartof | Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2000-07, Vol.18 (4), p.2027-2032 |
issn | 0734-2101 1520-8559 |
language | eng |
recordid | cdi_crossref_primary_10_1116_1_582467 |
source | AIP Journals Complete |
subjects | Dynamics Magnetic disk storage Magnetic heads |
title | Air bearing collision dynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T07%3A46%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Air%20bearing%20collision%20dynamics&rft.jtitle=Journal%20of%20Vacuum%20Science%20&%20Technology%20A:%20Vacuum,%20Surfaces,%20and%20Films&rft.au=Stupp,%20Steven%20E.&rft.date=2000-07&rft.volume=18&rft.issue=4&rft.spage=2027&rft.epage=2032&rft.pages=2027-2032&rft.issn=0734-2101&rft.eissn=1520-8559&rft.coden=JVTAD6&rft_id=info:doi/10.1116/1.582467&rft_dat=%3Cproquest_cross%3E745712299%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=745712299&rft_id=info:pmid/&rfr_iscdi=true |