X-ray photoelectron spectroscopy and atomic force microscopy investigation of stability mechanism of tris-(8-hydroxyquinoline) aluminum-based light-emitting devices
Stability is an essential issue in the application of organic light-emitting devices (OLEDs). We have investigated the indium tin oxide (ITO) surface for operated and unoperated OLEDs using x-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) techniques. The device structure cons...
Gespeichert in:
Veröffentlicht in: | Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films Surfaces, and Films, 1999-07, Vol.17 (4), p.2314-2317 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2317 |
---|---|
container_issue | 4 |
container_start_page | 2314 |
container_title | Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films |
container_volume | 17 |
creator | Le, Quoc Toan Avendano, F. M. Forsythe, E. W. Yan, Li Gao, Yongli Tang, C. W. |
description | Stability is an essential issue in the application of organic light-emitting devices (OLEDs). We have investigated the indium tin oxide (ITO) surface for operated and unoperated OLEDs using x-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) techniques. The device structure consists of ITO/phenyl-diamine (NPB)/tris-(8-hydroxyquinoline) aluminum
(
Alq
3
)
/Mg:Ag with NPB thickness varied from 0 to 300 Å. The ITO surface was exposed by removing the organic and metal layers with dichloromethane, an organic solvent in which NPB and
Alq
3
are highly soluble. Electroluminescence characterization demonstrates that the NPB layer substantially enhanced the stability. XPS analysis shows that for the device made without NPB and after 90 h of operation, there exists an insoluble organic material on the ITO surface. This organic material is not observed on the ITO of unoperated devices. Lateral force AFM also shows a striking difference between the ITO surface of devices with and without NPB after operation. The XPS and AFM results suggest that the organic residue is the degradation product of
Alq
3
that acts as quenching sites at the ITO/
Alq
3
interface, which contribute to the early failure of the single-layer devices. |
doi_str_mv | 10.1116/1.581766 |
format | Article |
fullrecord | <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1116_1_581766</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1116_1_581766</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-d81948ba4ae21f62eb040d347ec351aff8503495245e7fd665ca6a54c1bbd9d03</originalsourceid><addsrcrecordid>eNp9kEtLw0AUhQdRsFbBnzDLdjF1JsnksZTiCwpuFNyFyTyaK0kmzkyL-T_-UNNWuxFc3cM93z1wD0LXjC4YY-kNW_CcZWl6giaMR5TknBenaEKzOCERo-wcXXj_TimNIppO0NcbcWLAfW2D1Y2WwdkO-34vvLT9gEWnsAi2BYmNdVLjUf160G21D7AWAcYza7APooIGwoBbLWvRgW936-DAk1lO6kE5-zl8bKCzDXR6jkWzaaHbtKQSXivcwLoORLcQAnRrrPQWpPaX6MyIxuurnzlFr_d3L8tHsnp-eFreroiMeRGIylmR5JVIhI6YSSNd0YSqOMn06DNhTM5pnBQ8SrjOjEpTLkUqeCJZValC0XiKZofc3YPeaVP2DlrhhpLRctduycpDuyM6P6BeQti_f2S31h25slfmP_ZP7jd51Y3J</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>X-ray photoelectron spectroscopy and atomic force microscopy investigation of stability mechanism of tris-(8-hydroxyquinoline) aluminum-based light-emitting devices</title><source>AIP Journals Complete</source><creator>Le, Quoc Toan ; Avendano, F. M. ; Forsythe, E. W. ; Yan, Li ; Gao, Yongli ; Tang, C. W.</creator><creatorcontrib>Le, Quoc Toan ; Avendano, F. M. ; Forsythe, E. W. ; Yan, Li ; Gao, Yongli ; Tang, C. W.</creatorcontrib><description>Stability is an essential issue in the application of organic light-emitting devices (OLEDs). We have investigated the indium tin oxide (ITO) surface for operated and unoperated OLEDs using x-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) techniques. The device structure consists of ITO/phenyl-diamine (NPB)/tris-(8-hydroxyquinoline) aluminum
(
Alq
3
)
/Mg:Ag with NPB thickness varied from 0 to 300 Å. The ITO surface was exposed by removing the organic and metal layers with dichloromethane, an organic solvent in which NPB and
Alq
3
are highly soluble. Electroluminescence characterization demonstrates that the NPB layer substantially enhanced the stability. XPS analysis shows that for the device made without NPB and after 90 h of operation, there exists an insoluble organic material on the ITO surface. This organic material is not observed on the ITO of unoperated devices. Lateral force AFM also shows a striking difference between the ITO surface of devices with and without NPB after operation. The XPS and AFM results suggest that the organic residue is the degradation product of
Alq
3
that acts as quenching sites at the ITO/
Alq
3
interface, which contribute to the early failure of the single-layer devices.</description><identifier>ISSN: 0734-2101</identifier><identifier>EISSN: 1520-8559</identifier><identifier>DOI: 10.1116/1.581766</identifier><identifier>CODEN: JVTAD6</identifier><language>eng</language><ispartof>Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1999-07, Vol.17 (4), p.2314-2317</ispartof><rights>American Vacuum Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-d81948ba4ae21f62eb040d347ec351aff8503495245e7fd665ca6a54c1bbd9d03</citedby><cites>FETCH-LOGICAL-c359t-d81948ba4ae21f62eb040d347ec351aff8503495245e7fd665ca6a54c1bbd9d03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>310,311,315,781,785,790,791,795,4513,23935,23936,25145,27929,27930</link.rule.ids></links><search><creatorcontrib>Le, Quoc Toan</creatorcontrib><creatorcontrib>Avendano, F. M.</creatorcontrib><creatorcontrib>Forsythe, E. W.</creatorcontrib><creatorcontrib>Yan, Li</creatorcontrib><creatorcontrib>Gao, Yongli</creatorcontrib><creatorcontrib>Tang, C. W.</creatorcontrib><title>X-ray photoelectron spectroscopy and atomic force microscopy investigation of stability mechanism of tris-(8-hydroxyquinoline) aluminum-based light-emitting devices</title><title>Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films</title><description>Stability is an essential issue in the application of organic light-emitting devices (OLEDs). We have investigated the indium tin oxide (ITO) surface for operated and unoperated OLEDs using x-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) techniques. The device structure consists of ITO/phenyl-diamine (NPB)/tris-(8-hydroxyquinoline) aluminum
(
Alq
3
)
/Mg:Ag with NPB thickness varied from 0 to 300 Å. The ITO surface was exposed by removing the organic and metal layers with dichloromethane, an organic solvent in which NPB and
Alq
3
are highly soluble. Electroluminescence characterization demonstrates that the NPB layer substantially enhanced the stability. XPS analysis shows that for the device made without NPB and after 90 h of operation, there exists an insoluble organic material on the ITO surface. This organic material is not observed on the ITO of unoperated devices. Lateral force AFM also shows a striking difference between the ITO surface of devices with and without NPB after operation. The XPS and AFM results suggest that the organic residue is the degradation product of
Alq
3
that acts as quenching sites at the ITO/
Alq
3
interface, which contribute to the early failure of the single-layer devices.</description><issn>0734-2101</issn><issn>1520-8559</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLw0AUhQdRsFbBnzDLdjF1JsnksZTiCwpuFNyFyTyaK0kmzkyL-T_-UNNWuxFc3cM93z1wD0LXjC4YY-kNW_CcZWl6giaMR5TknBenaEKzOCERo-wcXXj_TimNIppO0NcbcWLAfW2D1Y2WwdkO-34vvLT9gEWnsAi2BYmNdVLjUf160G21D7AWAcYza7APooIGwoBbLWvRgW936-DAk1lO6kE5-zl8bKCzDXR6jkWzaaHbtKQSXivcwLoORLcQAnRrrPQWpPaX6MyIxuurnzlFr_d3L8tHsnp-eFreroiMeRGIylmR5JVIhI6YSSNd0YSqOMn06DNhTM5pnBQ8SrjOjEpTLkUqeCJZValC0XiKZofc3YPeaVP2DlrhhpLRctduycpDuyM6P6BeQti_f2S31h25slfmP_ZP7jd51Y3J</recordid><startdate>19990701</startdate><enddate>19990701</enddate><creator>Le, Quoc Toan</creator><creator>Avendano, F. M.</creator><creator>Forsythe, E. W.</creator><creator>Yan, Li</creator><creator>Gao, Yongli</creator><creator>Tang, C. W.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19990701</creationdate><title>X-ray photoelectron spectroscopy and atomic force microscopy investigation of stability mechanism of tris-(8-hydroxyquinoline) aluminum-based light-emitting devices</title><author>Le, Quoc Toan ; Avendano, F. M. ; Forsythe, E. W. ; Yan, Li ; Gao, Yongli ; Tang, C. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-d81948ba4ae21f62eb040d347ec351aff8503495245e7fd665ca6a54c1bbd9d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Le, Quoc Toan</creatorcontrib><creatorcontrib>Avendano, F. M.</creatorcontrib><creatorcontrib>Forsythe, E. W.</creatorcontrib><creatorcontrib>Yan, Li</creatorcontrib><creatorcontrib>Gao, Yongli</creatorcontrib><creatorcontrib>Tang, C. W.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Le, Quoc Toan</au><au>Avendano, F. M.</au><au>Forsythe, E. W.</au><au>Yan, Li</au><au>Gao, Yongli</au><au>Tang, C. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>X-ray photoelectron spectroscopy and atomic force microscopy investigation of stability mechanism of tris-(8-hydroxyquinoline) aluminum-based light-emitting devices</atitle><jtitle>Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films</jtitle><date>1999-07-01</date><risdate>1999</risdate><volume>17</volume><issue>4</issue><spage>2314</spage><epage>2317</epage><pages>2314-2317</pages><issn>0734-2101</issn><eissn>1520-8559</eissn><coden>JVTAD6</coden><abstract>Stability is an essential issue in the application of organic light-emitting devices (OLEDs). We have investigated the indium tin oxide (ITO) surface for operated and unoperated OLEDs using x-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) techniques. The device structure consists of ITO/phenyl-diamine (NPB)/tris-(8-hydroxyquinoline) aluminum
(
Alq
3
)
/Mg:Ag with NPB thickness varied from 0 to 300 Å. The ITO surface was exposed by removing the organic and metal layers with dichloromethane, an organic solvent in which NPB and
Alq
3
are highly soluble. Electroluminescence characterization demonstrates that the NPB layer substantially enhanced the stability. XPS analysis shows that for the device made without NPB and after 90 h of operation, there exists an insoluble organic material on the ITO surface. This organic material is not observed on the ITO of unoperated devices. Lateral force AFM also shows a striking difference between the ITO surface of devices with and without NPB after operation. The XPS and AFM results suggest that the organic residue is the degradation product of
Alq
3
that acts as quenching sites at the ITO/
Alq
3
interface, which contribute to the early failure of the single-layer devices.</abstract><doi>10.1116/1.581766</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0734-2101 |
ispartof | Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1999-07, Vol.17 (4), p.2314-2317 |
issn | 0734-2101 1520-8559 |
language | eng |
recordid | cdi_crossref_primary_10_1116_1_581766 |
source | AIP Journals Complete |
title | X-ray photoelectron spectroscopy and atomic force microscopy investigation of stability mechanism of tris-(8-hydroxyquinoline) aluminum-based light-emitting devices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T04%3A54%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=X-ray%20photoelectron%20spectroscopy%20and%20atomic%20force%20microscopy%20investigation%20of%20stability%20mechanism%20of%20tris-(8-hydroxyquinoline)%20aluminum-based%20light-emitting%20devices&rft.jtitle=Journal%20of%20Vacuum%20Science%20&%20Technology%20A:%20Vacuum,%20Surfaces,%20and%20Films&rft.au=Le,%20Quoc%20Toan&rft.date=1999-07-01&rft.volume=17&rft.issue=4&rft.spage=2314&rft.epage=2317&rft.pages=2314-2317&rft.issn=0734-2101&rft.eissn=1520-8559&rft.coden=JVTAD6&rft_id=info:doi/10.1116/1.581766&rft_dat=%3Cscitation_cross%3Escitation_primary_10_1116_1_581766%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |