X-ray photoelectron spectroscopy and atomic force microscopy investigation of stability mechanism of tris-(8-hydroxyquinoline) aluminum-based light-emitting devices

Stability is an essential issue in the application of organic light-emitting devices (OLEDs). We have investigated the indium tin oxide (ITO) surface for operated and unoperated OLEDs using x-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) techniques. The device structure cons...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films Surfaces, and Films, 1999-07, Vol.17 (4), p.2314-2317
Hauptverfasser: Le, Quoc Toan, Avendano, F. M., Forsythe, E. W., Yan, Li, Gao, Yongli, Tang, C. W.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2317
container_issue 4
container_start_page 2314
container_title Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films
container_volume 17
creator Le, Quoc Toan
Avendano, F. M.
Forsythe, E. W.
Yan, Li
Gao, Yongli
Tang, C. W.
description Stability is an essential issue in the application of organic light-emitting devices (OLEDs). We have investigated the indium tin oxide (ITO) surface for operated and unoperated OLEDs using x-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) techniques. The device structure consists of ITO/phenyl-diamine (NPB)/tris-(8-hydroxyquinoline) aluminum ( Alq 3 ) /Mg:Ag with NPB thickness varied from 0 to 300 Å. The ITO surface was exposed by removing the organic and metal layers with dichloromethane, an organic solvent in which NPB and Alq 3 are highly soluble. Electroluminescence characterization demonstrates that the NPB layer substantially enhanced the stability. XPS analysis shows that for the device made without NPB and after 90 h of operation, there exists an insoluble organic material on the ITO surface. This organic material is not observed on the ITO of unoperated devices. Lateral force AFM also shows a striking difference between the ITO surface of devices with and without NPB after operation. The XPS and AFM results suggest that the organic residue is the degradation product of Alq 3 that acts as quenching sites at the ITO/ Alq 3 interface, which contribute to the early failure of the single-layer devices.
doi_str_mv 10.1116/1.581766
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1116_1_581766</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1116_1_581766</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-d81948ba4ae21f62eb040d347ec351aff8503495245e7fd665ca6a54c1bbd9d03</originalsourceid><addsrcrecordid>eNp9kEtLw0AUhQdRsFbBnzDLdjF1JsnksZTiCwpuFNyFyTyaK0kmzkyL-T_-UNNWuxFc3cM93z1wD0LXjC4YY-kNW_CcZWl6giaMR5TknBenaEKzOCERo-wcXXj_TimNIppO0NcbcWLAfW2D1Y2WwdkO-34vvLT9gEWnsAi2BYmNdVLjUf160G21D7AWAcYza7APooIGwoBbLWvRgW936-DAk1lO6kE5-zl8bKCzDXR6jkWzaaHbtKQSXivcwLoORLcQAnRrrPQWpPaX6MyIxuurnzlFr_d3L8tHsnp-eFreroiMeRGIylmR5JVIhI6YSSNd0YSqOMn06DNhTM5pnBQ8SrjOjEpTLkUqeCJZValC0XiKZofc3YPeaVP2DlrhhpLRctduycpDuyM6P6BeQti_f2S31h25slfmP_ZP7jd51Y3J</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>X-ray photoelectron spectroscopy and atomic force microscopy investigation of stability mechanism of tris-(8-hydroxyquinoline) aluminum-based light-emitting devices</title><source>AIP Journals Complete</source><creator>Le, Quoc Toan ; Avendano, F. M. ; Forsythe, E. W. ; Yan, Li ; Gao, Yongli ; Tang, C. W.</creator><creatorcontrib>Le, Quoc Toan ; Avendano, F. M. ; Forsythe, E. W. ; Yan, Li ; Gao, Yongli ; Tang, C. W.</creatorcontrib><description>Stability is an essential issue in the application of organic light-emitting devices (OLEDs). We have investigated the indium tin oxide (ITO) surface for operated and unoperated OLEDs using x-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) techniques. The device structure consists of ITO/phenyl-diamine (NPB)/tris-(8-hydroxyquinoline) aluminum ( Alq 3 ) /Mg:Ag with NPB thickness varied from 0 to 300 Å. The ITO surface was exposed by removing the organic and metal layers with dichloromethane, an organic solvent in which NPB and Alq 3 are highly soluble. Electroluminescence characterization demonstrates that the NPB layer substantially enhanced the stability. XPS analysis shows that for the device made without NPB and after 90 h of operation, there exists an insoluble organic material on the ITO surface. This organic material is not observed on the ITO of unoperated devices. Lateral force AFM also shows a striking difference between the ITO surface of devices with and without NPB after operation. The XPS and AFM results suggest that the organic residue is the degradation product of Alq 3 that acts as quenching sites at the ITO/ Alq 3 interface, which contribute to the early failure of the single-layer devices.</description><identifier>ISSN: 0734-2101</identifier><identifier>EISSN: 1520-8559</identifier><identifier>DOI: 10.1116/1.581766</identifier><identifier>CODEN: JVTAD6</identifier><language>eng</language><ispartof>Journal of Vacuum Science &amp; Technology A: Vacuum, Surfaces, and Films, 1999-07, Vol.17 (4), p.2314-2317</ispartof><rights>American Vacuum Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-d81948ba4ae21f62eb040d347ec351aff8503495245e7fd665ca6a54c1bbd9d03</citedby><cites>FETCH-LOGICAL-c359t-d81948ba4ae21f62eb040d347ec351aff8503495245e7fd665ca6a54c1bbd9d03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>310,311,315,781,785,790,791,795,4513,23935,23936,25145,27929,27930</link.rule.ids></links><search><creatorcontrib>Le, Quoc Toan</creatorcontrib><creatorcontrib>Avendano, F. M.</creatorcontrib><creatorcontrib>Forsythe, E. W.</creatorcontrib><creatorcontrib>Yan, Li</creatorcontrib><creatorcontrib>Gao, Yongli</creatorcontrib><creatorcontrib>Tang, C. W.</creatorcontrib><title>X-ray photoelectron spectroscopy and atomic force microscopy investigation of stability mechanism of tris-(8-hydroxyquinoline) aluminum-based light-emitting devices</title><title>Journal of Vacuum Science &amp; Technology A: Vacuum, Surfaces, and Films</title><description>Stability is an essential issue in the application of organic light-emitting devices (OLEDs). We have investigated the indium tin oxide (ITO) surface for operated and unoperated OLEDs using x-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) techniques. The device structure consists of ITO/phenyl-diamine (NPB)/tris-(8-hydroxyquinoline) aluminum ( Alq 3 ) /Mg:Ag with NPB thickness varied from 0 to 300 Å. The ITO surface was exposed by removing the organic and metal layers with dichloromethane, an organic solvent in which NPB and Alq 3 are highly soluble. Electroluminescence characterization demonstrates that the NPB layer substantially enhanced the stability. XPS analysis shows that for the device made without NPB and after 90 h of operation, there exists an insoluble organic material on the ITO surface. This organic material is not observed on the ITO of unoperated devices. Lateral force AFM also shows a striking difference between the ITO surface of devices with and without NPB after operation. The XPS and AFM results suggest that the organic residue is the degradation product of Alq 3 that acts as quenching sites at the ITO/ Alq 3 interface, which contribute to the early failure of the single-layer devices.</description><issn>0734-2101</issn><issn>1520-8559</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLw0AUhQdRsFbBnzDLdjF1JsnksZTiCwpuFNyFyTyaK0kmzkyL-T_-UNNWuxFc3cM93z1wD0LXjC4YY-kNW_CcZWl6giaMR5TknBenaEKzOCERo-wcXXj_TimNIppO0NcbcWLAfW2D1Y2WwdkO-34vvLT9gEWnsAi2BYmNdVLjUf160G21D7AWAcYza7APooIGwoBbLWvRgW936-DAk1lO6kE5-zl8bKCzDXR6jkWzaaHbtKQSXivcwLoORLcQAnRrrPQWpPaX6MyIxuurnzlFr_d3L8tHsnp-eFreroiMeRGIylmR5JVIhI6YSSNd0YSqOMn06DNhTM5pnBQ8SrjOjEpTLkUqeCJZValC0XiKZofc3YPeaVP2DlrhhpLRctduycpDuyM6P6BeQti_f2S31h25slfmP_ZP7jd51Y3J</recordid><startdate>19990701</startdate><enddate>19990701</enddate><creator>Le, Quoc Toan</creator><creator>Avendano, F. M.</creator><creator>Forsythe, E. W.</creator><creator>Yan, Li</creator><creator>Gao, Yongli</creator><creator>Tang, C. W.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19990701</creationdate><title>X-ray photoelectron spectroscopy and atomic force microscopy investigation of stability mechanism of tris-(8-hydroxyquinoline) aluminum-based light-emitting devices</title><author>Le, Quoc Toan ; Avendano, F. M. ; Forsythe, E. W. ; Yan, Li ; Gao, Yongli ; Tang, C. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-d81948ba4ae21f62eb040d347ec351aff8503495245e7fd665ca6a54c1bbd9d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Le, Quoc Toan</creatorcontrib><creatorcontrib>Avendano, F. M.</creatorcontrib><creatorcontrib>Forsythe, E. W.</creatorcontrib><creatorcontrib>Yan, Li</creatorcontrib><creatorcontrib>Gao, Yongli</creatorcontrib><creatorcontrib>Tang, C. W.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of Vacuum Science &amp; Technology A: Vacuum, Surfaces, and Films</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Le, Quoc Toan</au><au>Avendano, F. M.</au><au>Forsythe, E. W.</au><au>Yan, Li</au><au>Gao, Yongli</au><au>Tang, C. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>X-ray photoelectron spectroscopy and atomic force microscopy investigation of stability mechanism of tris-(8-hydroxyquinoline) aluminum-based light-emitting devices</atitle><jtitle>Journal of Vacuum Science &amp; Technology A: Vacuum, Surfaces, and Films</jtitle><date>1999-07-01</date><risdate>1999</risdate><volume>17</volume><issue>4</issue><spage>2314</spage><epage>2317</epage><pages>2314-2317</pages><issn>0734-2101</issn><eissn>1520-8559</eissn><coden>JVTAD6</coden><abstract>Stability is an essential issue in the application of organic light-emitting devices (OLEDs). We have investigated the indium tin oxide (ITO) surface for operated and unoperated OLEDs using x-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) techniques. The device structure consists of ITO/phenyl-diamine (NPB)/tris-(8-hydroxyquinoline) aluminum ( Alq 3 ) /Mg:Ag with NPB thickness varied from 0 to 300 Å. The ITO surface was exposed by removing the organic and metal layers with dichloromethane, an organic solvent in which NPB and Alq 3 are highly soluble. Electroluminescence characterization demonstrates that the NPB layer substantially enhanced the stability. XPS analysis shows that for the device made without NPB and after 90 h of operation, there exists an insoluble organic material on the ITO surface. This organic material is not observed on the ITO of unoperated devices. Lateral force AFM also shows a striking difference between the ITO surface of devices with and without NPB after operation. The XPS and AFM results suggest that the organic residue is the degradation product of Alq 3 that acts as quenching sites at the ITO/ Alq 3 interface, which contribute to the early failure of the single-layer devices.</abstract><doi>10.1116/1.581766</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0734-2101
ispartof Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1999-07, Vol.17 (4), p.2314-2317
issn 0734-2101
1520-8559
language eng
recordid cdi_crossref_primary_10_1116_1_581766
source AIP Journals Complete
title X-ray photoelectron spectroscopy and atomic force microscopy investigation of stability mechanism of tris-(8-hydroxyquinoline) aluminum-based light-emitting devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T04%3A54%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=X-ray%20photoelectron%20spectroscopy%20and%20atomic%20force%20microscopy%20investigation%20of%20stability%20mechanism%20of%20tris-(8-hydroxyquinoline)%20aluminum-based%20light-emitting%20devices&rft.jtitle=Journal%20of%20Vacuum%20Science%20&%20Technology%20A:%20Vacuum,%20Surfaces,%20and%20Films&rft.au=Le,%20Quoc%20Toan&rft.date=1999-07-01&rft.volume=17&rft.issue=4&rft.spage=2314&rft.epage=2317&rft.pages=2314-2317&rft.issn=0734-2101&rft.eissn=1520-8559&rft.coden=JVTAD6&rft_id=info:doi/10.1116/1.581766&rft_dat=%3Cscitation_cross%3Escitation_primary_10_1116_1_581766%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true