Formation of MoS2 from elemental Mo and S using reactive molecular dynamics simulations

Mo- and S-based lubricant additives reduce friction in boundary lubrication through the formation of molybdenum disulfide ( MoS 2) during operation. However, the fundamental mechanisms of MoS 2 formation are still not fully understood, in part because direct experimental measurement is challenging d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of vacuum science & technology. A, Vacuum, surfaces, and films Vacuum, surfaces, and films, 2020-03, Vol.38 (2)
Hauptverfasser: Chen, Rimei, Jusufi, Arben, Schilowitz, Alan, Martini, Ashlie
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Journal of vacuum science & technology. A, Vacuum, surfaces, and films
container_volume 38
creator Chen, Rimei
Jusufi, Arben
Schilowitz, Alan
Martini, Ashlie
description Mo- and S-based lubricant additives reduce friction in boundary lubrication through the formation of molybdenum disulfide ( MoS 2) during operation. However, the fundamental mechanisms of MoS 2 formation are still not fully understood, in part because direct experimental measurement is challenging during the crystallization process. Previously, reactive molecular dynamics simulations were used to model the formation of crystalline MoS 2 by compressing and heating amorphous material consisting of Mo and S. Here, the authors test the robustness of these models to capture the crystallization process under different simulation conditions and with different reactive force fields. Lastly, a reactive force field that contains parameters for Mo, S, and O was modified to enable it to capture MoS 2 crystallization in the presence of oxygen.
doi_str_mv 10.1116/1.5128377
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1116_1_5128377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1116_1_5128377</sourcerecordid><originalsourceid>FETCH-LOGICAL-c299t-8220863001bdc714588c04b9de9d399519022add1d71652fe24c2b959afc4f843</originalsourceid><addsrcrecordid>eNp9kE9LwzAchoMoWKcHv0GuCp35pU2bHGW4KUw8TPFY0vyRSNOMpBvs29u5oQfB0wsvDw8vL0LXQKYAUN3BlAHlRV2foAwYJTlnTJyijNRFmVMgcI4uUvokhFBKqgy9z0P0cnChx8Hi57Ci2MbgsemMN_0gu7HDstd4hTfJ9R84GqkGtzXYh86oTScj1rteeqcSTs6PxV6WLtGZlV0yV8ecoLf5w-vsMV--LJ5m98tcUSGGnI8reFUQAq1WNZSMc0XKVmgjdCEEAzHulFqDrqFi1BpaKtoKJqRVpeVlMUE3B6-KIaVobLOOzsu4a4A0-0caaI6PjOztgU3KDd8zf-BtiL9gs9b2P_iv-Qvqd27P</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Formation of MoS2 from elemental Mo and S using reactive molecular dynamics simulations</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Chen, Rimei ; Jusufi, Arben ; Schilowitz, Alan ; Martini, Ashlie</creator><creatorcontrib>Chen, Rimei ; Jusufi, Arben ; Schilowitz, Alan ; Martini, Ashlie</creatorcontrib><description>Mo- and S-based lubricant additives reduce friction in boundary lubrication through the formation of molybdenum disulfide ( MoS 2) during operation. However, the fundamental mechanisms of MoS 2 formation are still not fully understood, in part because direct experimental measurement is challenging during the crystallization process. Previously, reactive molecular dynamics simulations were used to model the formation of crystalline MoS 2 by compressing and heating amorphous material consisting of Mo and S. Here, the authors test the robustness of these models to capture the crystallization process under different simulation conditions and with different reactive force fields. Lastly, a reactive force field that contains parameters for Mo, S, and O was modified to enable it to capture MoS 2 crystallization in the presence of oxygen.</description><identifier>ISSN: 0734-2101</identifier><identifier>EISSN: 1520-8559</identifier><identifier>DOI: 10.1116/1.5128377</identifier><identifier>CODEN: JVTAD6</identifier><language>eng</language><ispartof>Journal of vacuum science &amp; technology. A, Vacuum, surfaces, and films, 2020-03, Vol.38 (2)</ispartof><rights>Author(s)</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c299t-8220863001bdc714588c04b9de9d399519022add1d71652fe24c2b959afc4f843</citedby><cites>FETCH-LOGICAL-c299t-8220863001bdc714588c04b9de9d399519022add1d71652fe24c2b959afc4f843</cites><orcidid>0000-0003-3940-6692 ; 0000-0003-2017-6081</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,4498,27901,27902</link.rule.ids></links><search><creatorcontrib>Chen, Rimei</creatorcontrib><creatorcontrib>Jusufi, Arben</creatorcontrib><creatorcontrib>Schilowitz, Alan</creatorcontrib><creatorcontrib>Martini, Ashlie</creatorcontrib><title>Formation of MoS2 from elemental Mo and S using reactive molecular dynamics simulations</title><title>Journal of vacuum science &amp; technology. A, Vacuum, surfaces, and films</title><description>Mo- and S-based lubricant additives reduce friction in boundary lubrication through the formation of molybdenum disulfide ( MoS 2) during operation. However, the fundamental mechanisms of MoS 2 formation are still not fully understood, in part because direct experimental measurement is challenging during the crystallization process. Previously, reactive molecular dynamics simulations were used to model the formation of crystalline MoS 2 by compressing and heating amorphous material consisting of Mo and S. Here, the authors test the robustness of these models to capture the crystallization process under different simulation conditions and with different reactive force fields. Lastly, a reactive force field that contains parameters for Mo, S, and O was modified to enable it to capture MoS 2 crystallization in the presence of oxygen.</description><issn>0734-2101</issn><issn>1520-8559</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LwzAchoMoWKcHv0GuCp35pU2bHGW4KUw8TPFY0vyRSNOMpBvs29u5oQfB0wsvDw8vL0LXQKYAUN3BlAHlRV2foAwYJTlnTJyijNRFmVMgcI4uUvokhFBKqgy9z0P0cnChx8Hi57Ci2MbgsemMN_0gu7HDstd4hTfJ9R84GqkGtzXYh86oTScj1rteeqcSTs6PxV6WLtGZlV0yV8ecoLf5w-vsMV--LJ5m98tcUSGGnI8reFUQAq1WNZSMc0XKVmgjdCEEAzHulFqDrqFi1BpaKtoKJqRVpeVlMUE3B6-KIaVobLOOzsu4a4A0-0caaI6PjOztgU3KDd8zf-BtiL9gs9b2P_iv-Qvqd27P</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>Chen, Rimei</creator><creator>Jusufi, Arben</creator><creator>Schilowitz, Alan</creator><creator>Martini, Ashlie</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3940-6692</orcidid><orcidid>https://orcid.org/0000-0003-2017-6081</orcidid></search><sort><creationdate>202003</creationdate><title>Formation of MoS2 from elemental Mo and S using reactive molecular dynamics simulations</title><author>Chen, Rimei ; Jusufi, Arben ; Schilowitz, Alan ; Martini, Ashlie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c299t-8220863001bdc714588c04b9de9d399519022add1d71652fe24c2b959afc4f843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Rimei</creatorcontrib><creatorcontrib>Jusufi, Arben</creatorcontrib><creatorcontrib>Schilowitz, Alan</creatorcontrib><creatorcontrib>Martini, Ashlie</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of vacuum science &amp; technology. A, Vacuum, surfaces, and films</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Rimei</au><au>Jusufi, Arben</au><au>Schilowitz, Alan</au><au>Martini, Ashlie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Formation of MoS2 from elemental Mo and S using reactive molecular dynamics simulations</atitle><jtitle>Journal of vacuum science &amp; technology. A, Vacuum, surfaces, and films</jtitle><date>2020-03</date><risdate>2020</risdate><volume>38</volume><issue>2</issue><issn>0734-2101</issn><eissn>1520-8559</eissn><coden>JVTAD6</coden><abstract>Mo- and S-based lubricant additives reduce friction in boundary lubrication through the formation of molybdenum disulfide ( MoS 2) during operation. However, the fundamental mechanisms of MoS 2 formation are still not fully understood, in part because direct experimental measurement is challenging during the crystallization process. Previously, reactive molecular dynamics simulations were used to model the formation of crystalline MoS 2 by compressing and heating amorphous material consisting of Mo and S. Here, the authors test the robustness of these models to capture the crystallization process under different simulation conditions and with different reactive force fields. Lastly, a reactive force field that contains parameters for Mo, S, and O was modified to enable it to capture MoS 2 crystallization in the presence of oxygen.</abstract><doi>10.1116/1.5128377</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3940-6692</orcidid><orcidid>https://orcid.org/0000-0003-2017-6081</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0734-2101
ispartof Journal of vacuum science & technology. A, Vacuum, surfaces, and films, 2020-03, Vol.38 (2)
issn 0734-2101
1520-8559
language eng
recordid cdi_crossref_primary_10_1116_1_5128377
source AIP Journals Complete; Alma/SFX Local Collection
title Formation of MoS2 from elemental Mo and S using reactive molecular dynamics simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T06%3A29%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Formation%20of%20MoS2%20from%20elemental%20Mo%20and%20S%20using%20reactive%20molecular%20dynamics%20simulations&rft.jtitle=Journal%20of%20vacuum%20science%20&%20technology.%20A,%20Vacuum,%20surfaces,%20and%20films&rft.au=Chen,%20Rimei&rft.date=2020-03&rft.volume=38&rft.issue=2&rft.issn=0734-2101&rft.eissn=1520-8559&rft.coden=JVTAD6&rft_id=info:doi/10.1116/1.5128377&rft_dat=%3Cscitation_cross%3Escitation_primary_10_1116_1_5128377%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true