Effects of film reoxidation on the growth and material properties of ultrathin dielectrics grown by rapid thermal nitridation in ammonia

Ultrathin silicon oxynitrides have been used successfully as gate dielectrics for advanced complementary metal-oxide semiconductor technologies. Here, the authors compare the growth and material properties of oxynitrides grown by rapid thermal nitridation of silicon in ammonia ( RT - N H 3 ) followe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of vacuum science & technology. B, Microelectronics and nanometer structures processing, measurement and phenomena Microelectronics and nanometer structures processing, measurement and phenomena, 2008-07, Vol.26 (4), p.1382-1389
Hauptverfasser: D’Emic, C., Newbury, J., Scerbo, C., Copel, M., Gordon, M.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1389
container_issue 4
container_start_page 1382
container_title Journal of vacuum science & technology. B, Microelectronics and nanometer structures processing, measurement and phenomena
container_volume 26
creator D’Emic, C.
Newbury, J.
Scerbo, C.
Copel, M.
Gordon, M.
description Ultrathin silicon oxynitrides have been used successfully as gate dielectrics for advanced complementary metal-oxide semiconductor technologies. Here, the authors compare the growth and material properties of oxynitrides grown by rapid thermal nitridation of silicon in ammonia ( RT - N H 3 ) followed by reoxidation in NO, O 2 , or N 2 O . While the nitrogen concentration of the film is primarily determined by the RT - N H 3 condition, reoxidation causes a slight change in nitrogen content and increase in film thickness which varies depending on the initial nitrogen concentration in the film and the oxidizing conditions used. The nitrogen/oxygen concentration ratio was determined to be sensitive to the reoxidizing species, process pressure, and exposure time. Compositional analysis by medium energy ion scattering indicates similarities in microstructure but differences in nitrogen and oxygen profiles among the different films. Results indicate that reoxidation in NO, O 2 , or N 2 O can result in different nitrogen concentrations at the bottom interface under the same process conditions. Thus, the choice of reoxidizing species may be an important decision for a gate dielectric process since the amount and placement of nitrogen needs to be optimized to reduce the impact on device peak mobility and threshold voltage, while still be sufficient to improve hot carrier reliability, reduce defect generation rates and gate leakage current, and suppress boron penetration from the gate electrode [D. A. Buchanan, IBM J. Res. Dev. 43, 245 (1999); M. L. Green et al. , J. Appl. Phys. 90, 205 (2001); E. Gusev et al. , IBM J. Res. Dev. 43, 265 (1999)].
doi_str_mv 10.1116/1.2953730
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1116_1_2953730</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1116_1_2953730</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-dbeebb876977de525a215aef00aa83e48275966267b75b29bc81eacd3113745a3</originalsourceid><addsrcrecordid>eNqdkNtKxDAQhoMouK5e-Aa5Veiaw6ZpL2VZV2HBG70u02biRtqmJPGwb-Bj2z2A98LADMz__TP8hFxzNuOc53d8JkoltWQnZMKVYFmhcn06zkzzjDMhz8lFjO-MsVxJOSE_S2uxSZF6S61rOxrQfzsDyfmejpU2SN-C_0obCr2hHSQMDlo6BD9gSA735EebAqSN66lx2I5-wTVxz_W03tIAgzM7q9CNaO_G9fHCSEDX-d7BJTmz0Ea8OvYpeX1Yviwes_Xz6mlxv84aocqUmRqxrgudl1obVEKB4ArQMgZQSJwXQqsyz0Wua61qUdZNwREaIzmXeq5ATsnNwbcJPsaAthqC6yBsK86qXYQVr44RjtrbgzY2Lu0f_p_404c_YTUYK38BnT-C2A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Effects of film reoxidation on the growth and material properties of ultrathin dielectrics grown by rapid thermal nitridation in ammonia</title><source>American Institute of Physics (AIP) Journals</source><creator>D’Emic, C. ; Newbury, J. ; Scerbo, C. ; Copel, M. ; Gordon, M.</creator><creatorcontrib>D’Emic, C. ; Newbury, J. ; Scerbo, C. ; Copel, M. ; Gordon, M.</creatorcontrib><description>Ultrathin silicon oxynitrides have been used successfully as gate dielectrics for advanced complementary metal-oxide semiconductor technologies. Here, the authors compare the growth and material properties of oxynitrides grown by rapid thermal nitridation of silicon in ammonia ( RT - N H 3 ) followed by reoxidation in NO, O 2 , or N 2 O . While the nitrogen concentration of the film is primarily determined by the RT - N H 3 condition, reoxidation causes a slight change in nitrogen content and increase in film thickness which varies depending on the initial nitrogen concentration in the film and the oxidizing conditions used. The nitrogen/oxygen concentration ratio was determined to be sensitive to the reoxidizing species, process pressure, and exposure time. Compositional analysis by medium energy ion scattering indicates similarities in microstructure but differences in nitrogen and oxygen profiles among the different films. Results indicate that reoxidation in NO, O 2 , or N 2 O can result in different nitrogen concentrations at the bottom interface under the same process conditions. Thus, the choice of reoxidizing species may be an important decision for a gate dielectric process since the amount and placement of nitrogen needs to be optimized to reduce the impact on device peak mobility and threshold voltage, while still be sufficient to improve hot carrier reliability, reduce defect generation rates and gate leakage current, and suppress boron penetration from the gate electrode [D. A. Buchanan, IBM J. Res. Dev. 43, 245 (1999); M. L. Green et al. , J. Appl. Phys. 90, 205 (2001); E. Gusev et al. , IBM J. Res. Dev. 43, 265 (1999)].</description><identifier>ISSN: 1071-1023</identifier><identifier>EISSN: 1520-8567</identifier><identifier>DOI: 10.1116/1.2953730</identifier><identifier>CODEN: JVTBD9</identifier><language>eng</language><ispartof>Journal of vacuum science &amp; technology. B, Microelectronics and nanometer structures processing, measurement and phenomena, 2008-07, Vol.26 (4), p.1382-1389</ispartof><rights>American Vacuum Society</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c259t-dbeebb876977de525a215aef00aa83e48275966267b75b29bc81eacd3113745a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,4512,27924,27925</link.rule.ids></links><search><creatorcontrib>D’Emic, C.</creatorcontrib><creatorcontrib>Newbury, J.</creatorcontrib><creatorcontrib>Scerbo, C.</creatorcontrib><creatorcontrib>Copel, M.</creatorcontrib><creatorcontrib>Gordon, M.</creatorcontrib><title>Effects of film reoxidation on the growth and material properties of ultrathin dielectrics grown by rapid thermal nitridation in ammonia</title><title>Journal of vacuum science &amp; technology. B, Microelectronics and nanometer structures processing, measurement and phenomena</title><description>Ultrathin silicon oxynitrides have been used successfully as gate dielectrics for advanced complementary metal-oxide semiconductor technologies. Here, the authors compare the growth and material properties of oxynitrides grown by rapid thermal nitridation of silicon in ammonia ( RT - N H 3 ) followed by reoxidation in NO, O 2 , or N 2 O . While the nitrogen concentration of the film is primarily determined by the RT - N H 3 condition, reoxidation causes a slight change in nitrogen content and increase in film thickness which varies depending on the initial nitrogen concentration in the film and the oxidizing conditions used. The nitrogen/oxygen concentration ratio was determined to be sensitive to the reoxidizing species, process pressure, and exposure time. Compositional analysis by medium energy ion scattering indicates similarities in microstructure but differences in nitrogen and oxygen profiles among the different films. Results indicate that reoxidation in NO, O 2 , or N 2 O can result in different nitrogen concentrations at the bottom interface under the same process conditions. Thus, the choice of reoxidizing species may be an important decision for a gate dielectric process since the amount and placement of nitrogen needs to be optimized to reduce the impact on device peak mobility and threshold voltage, while still be sufficient to improve hot carrier reliability, reduce defect generation rates and gate leakage current, and suppress boron penetration from the gate electrode [D. A. Buchanan, IBM J. Res. Dev. 43, 245 (1999); M. L. Green et al. , J. Appl. Phys. 90, 205 (2001); E. Gusev et al. , IBM J. Res. Dev. 43, 265 (1999)].</description><issn>1071-1023</issn><issn>1520-8567</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqdkNtKxDAQhoMouK5e-Aa5Veiaw6ZpL2VZV2HBG70u02biRtqmJPGwb-Bj2z2A98LADMz__TP8hFxzNuOc53d8JkoltWQnZMKVYFmhcn06zkzzjDMhz8lFjO-MsVxJOSE_S2uxSZF6S61rOxrQfzsDyfmejpU2SN-C_0obCr2hHSQMDlo6BD9gSA735EebAqSN66lx2I5-wTVxz_W03tIAgzM7q9CNaO_G9fHCSEDX-d7BJTmz0Ea8OvYpeX1Yviwes_Xz6mlxv84aocqUmRqxrgudl1obVEKB4ArQMgZQSJwXQqsyz0Wua61qUdZNwREaIzmXeq5ATsnNwbcJPsaAthqC6yBsK86qXYQVr44RjtrbgzY2Lu0f_p_404c_YTUYK38BnT-C2A</recordid><startdate>20080701</startdate><enddate>20080701</enddate><creator>D’Emic, C.</creator><creator>Newbury, J.</creator><creator>Scerbo, C.</creator><creator>Copel, M.</creator><creator>Gordon, M.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20080701</creationdate><title>Effects of film reoxidation on the growth and material properties of ultrathin dielectrics grown by rapid thermal nitridation in ammonia</title><author>D’Emic, C. ; Newbury, J. ; Scerbo, C. ; Copel, M. ; Gordon, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-dbeebb876977de525a215aef00aa83e48275966267b75b29bc81eacd3113745a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><toplevel>online_resources</toplevel><creatorcontrib>D’Emic, C.</creatorcontrib><creatorcontrib>Newbury, J.</creatorcontrib><creatorcontrib>Scerbo, C.</creatorcontrib><creatorcontrib>Copel, M.</creatorcontrib><creatorcontrib>Gordon, M.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of vacuum science &amp; technology. B, Microelectronics and nanometer structures processing, measurement and phenomena</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>D’Emic, C.</au><au>Newbury, J.</au><au>Scerbo, C.</au><au>Copel, M.</au><au>Gordon, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of film reoxidation on the growth and material properties of ultrathin dielectrics grown by rapid thermal nitridation in ammonia</atitle><jtitle>Journal of vacuum science &amp; technology. B, Microelectronics and nanometer structures processing, measurement and phenomena</jtitle><date>2008-07-01</date><risdate>2008</risdate><volume>26</volume><issue>4</issue><spage>1382</spage><epage>1389</epage><pages>1382-1389</pages><issn>1071-1023</issn><eissn>1520-8567</eissn><coden>JVTBD9</coden><abstract>Ultrathin silicon oxynitrides have been used successfully as gate dielectrics for advanced complementary metal-oxide semiconductor technologies. Here, the authors compare the growth and material properties of oxynitrides grown by rapid thermal nitridation of silicon in ammonia ( RT - N H 3 ) followed by reoxidation in NO, O 2 , or N 2 O . While the nitrogen concentration of the film is primarily determined by the RT - N H 3 condition, reoxidation causes a slight change in nitrogen content and increase in film thickness which varies depending on the initial nitrogen concentration in the film and the oxidizing conditions used. The nitrogen/oxygen concentration ratio was determined to be sensitive to the reoxidizing species, process pressure, and exposure time. Compositional analysis by medium energy ion scattering indicates similarities in microstructure but differences in nitrogen and oxygen profiles among the different films. Results indicate that reoxidation in NO, O 2 , or N 2 O can result in different nitrogen concentrations at the bottom interface under the same process conditions. Thus, the choice of reoxidizing species may be an important decision for a gate dielectric process since the amount and placement of nitrogen needs to be optimized to reduce the impact on device peak mobility and threshold voltage, while still be sufficient to improve hot carrier reliability, reduce defect generation rates and gate leakage current, and suppress boron penetration from the gate electrode [D. A. Buchanan, IBM J. Res. Dev. 43, 245 (1999); M. L. Green et al. , J. Appl. Phys. 90, 205 (2001); E. Gusev et al. , IBM J. Res. Dev. 43, 265 (1999)].</abstract><doi>10.1116/1.2953730</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1071-1023
ispartof Journal of vacuum science & technology. B, Microelectronics and nanometer structures processing, measurement and phenomena, 2008-07, Vol.26 (4), p.1382-1389
issn 1071-1023
1520-8567
language eng
recordid cdi_crossref_primary_10_1116_1_2953730
source American Institute of Physics (AIP) Journals
title Effects of film reoxidation on the growth and material properties of ultrathin dielectrics grown by rapid thermal nitridation in ammonia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A42%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20film%20reoxidation%20on%20the%20growth%20and%20material%20properties%20of%20ultrathin%20dielectrics%20grown%20by%20rapid%20thermal%20nitridation%20in%20ammonia&rft.jtitle=Journal%20of%20vacuum%20science%20&%20technology.%20B,%20Microelectronics%20and%20nanometer%20structures%20processing,%20measurement%20and%20phenomena&rft.au=D%E2%80%99Emic,%20C.&rft.date=2008-07-01&rft.volume=26&rft.issue=4&rft.spage=1382&rft.epage=1389&rft.pages=1382-1389&rft.issn=1071-1023&rft.eissn=1520-8567&rft.coden=JVTBD9&rft_id=info:doi/10.1116/1.2953730&rft_dat=%3Cscitation_cross%3Escitation_primary_10_1116_1_2953730%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true