Thin-film transformations and volatile products in the formation of nanoporous low- k polymethylsilsesquioxane-based dielectric

The thermal transformation of spin-cast thin films to produce nanoporous low- k dielectric layers has been investigated using polymethysilsesquioxane (PMSSQ) for the low- k matrix and polymethylmethacrylate-co-dimethylaminoethylacrylate (PMMA-co-DMAEMA) as the porogen which is volatilized to leave n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 2005-05, Vol.23 (3), p.908-917
Hauptverfasser: Lazzeri, P., Vanzetti, L., Anderle, M., Bersani, M., Park, J. J., Lin, Z., Briber, R. M., Rubloff, G. W., Kim, H. C., Miller, R. D.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 917
container_issue 3
container_start_page 908
container_title Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures
container_volume 23
creator Lazzeri, P.
Vanzetti, L.
Anderle, M.
Bersani, M.
Park, J. J.
Lin, Z.
Briber, R. M.
Rubloff, G. W.
Kim, H. C.
Miller, R. D.
description The thermal transformation of spin-cast thin films to produce nanoporous low- k dielectric layers has been investigated using polymethysilsesquioxane (PMSSQ) for the low- k matrix and polymethylmethacrylate-co-dimethylaminoethylacrylate (PMMA-co-DMAEMA) as the porogen which is volatilized to leave nanopores in the matrix. Surface analysis methods, including time of flight-secondary ion mass spectrometry and x-ray photoelectron spectroscopy, and thin film analysis by small-angle neutron scattering revealed the kinetics of matrix crosslinking, while thermal desorption mass spectrometry showed the evolution of gaseous reaction products from porogen and matrix during the complex chemical transformations which occur with thermal cycling from 100 ° C to 450 ° C . Matrix crosslinking occurs primarily at lower temperatures ( 100 – 225 ° C ) , while porogen diffusion and decomposition begins somewhat above 200 ° C , leading to phase separation which creates the final nanoporous structure. Since matrix and porogen reaction kinetics have some overlap, relative kinetics can be important: e.g., matrix crosslinking proceeds more rapidly for PMSSQ precursors with high Si–OH content cf. low SiOH content, with implications for the morphology of porogen-derived nanostructure. As surface species transform (matrix crosslinking) and disappear (porogen volatilization), their complements are seen in the gas phase as reaction and decomposition products. Porogen decomposition is ligand selective, in that the N-containing ligand of DMAEMA is volatilized at considerably lower temperatures ( ∼ 200 ° C ) than that ( ∼ 400 ° C ) for the remaining species (the PMMA ligand and the common backbone for both PMMA and DMAEMA).
doi_str_mv 10.1116/1.1900734
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1116_1_1900734</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1116_1_1900734</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-68bed583ba6f1b8a481d432266775405687129f6ef05dc988a01b45a3865d8ec3</originalsourceid><addsrcrecordid>eNp90MtKAzEUBuAgCtbqwjfIViE1mUwy6VKKNyi4UXA3ZHKh0TQZk7Tala9ua0tdCK4O5_Dxw_kBOCd4RAjhV2RExhg3tD4AA8IqjATjzSEYbE6oIuTlGJzk_Iox5ozSAfh6mrmArPNzWJIM2cY0l8XFkKEMGi6jX2_ewD5FvVAlQxdgmRm4dzBaGGSIfUxxkaGPHwi-wT761dyU2cpn57PJ7wsXP2UwqJPZaKid8UaV5NQpOLJyLc52cwieb2-eJvdo-nj3MLmeIkU5K4iLzmgmaCe5JZ2QtSC6plXFedOwGjMuGlKNLTcWM63GQkhMuppJKjjTwig6BBfbXJVizsnYtk9uLtOqJbjdNNeSdtfc2l5ubVau_Dy5x8uYfmHba_sf_pv8DXJGf9o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thin-film transformations and volatile products in the formation of nanoporous low- k polymethylsilsesquioxane-based dielectric</title><source>AIP Journals Complete</source><creator>Lazzeri, P. ; Vanzetti, L. ; Anderle, M. ; Bersani, M. ; Park, J. J. ; Lin, Z. ; Briber, R. M. ; Rubloff, G. W. ; Kim, H. C. ; Miller, R. D.</creator><creatorcontrib>Lazzeri, P. ; Vanzetti, L. ; Anderle, M. ; Bersani, M. ; Park, J. J. ; Lin, Z. ; Briber, R. M. ; Rubloff, G. W. ; Kim, H. C. ; Miller, R. D.</creatorcontrib><description>The thermal transformation of spin-cast thin films to produce nanoporous low- k dielectric layers has been investigated using polymethysilsesquioxane (PMSSQ) for the low- k matrix and polymethylmethacrylate-co-dimethylaminoethylacrylate (PMMA-co-DMAEMA) as the porogen which is volatilized to leave nanopores in the matrix. Surface analysis methods, including time of flight-secondary ion mass spectrometry and x-ray photoelectron spectroscopy, and thin film analysis by small-angle neutron scattering revealed the kinetics of matrix crosslinking, while thermal desorption mass spectrometry showed the evolution of gaseous reaction products from porogen and matrix during the complex chemical transformations which occur with thermal cycling from 100 ° C to 450 ° C . Matrix crosslinking occurs primarily at lower temperatures ( 100 – 225 ° C ) , while porogen diffusion and decomposition begins somewhat above 200 ° C , leading to phase separation which creates the final nanoporous structure. Since matrix and porogen reaction kinetics have some overlap, relative kinetics can be important: e.g., matrix crosslinking proceeds more rapidly for PMSSQ precursors with high Si–OH content cf. low SiOH content, with implications for the morphology of porogen-derived nanostructure. As surface species transform (matrix crosslinking) and disappear (porogen volatilization), their complements are seen in the gas phase as reaction and decomposition products. Porogen decomposition is ligand selective, in that the N-containing ligand of DMAEMA is volatilized at considerably lower temperatures ( ∼ 200 ° C ) than that ( ∼ 400 ° C ) for the remaining species (the PMMA ligand and the common backbone for both PMMA and DMAEMA).</description><identifier>ISSN: 0734-211X</identifier><identifier>ISSN: 1071-1023</identifier><identifier>EISSN: 1520-8567</identifier><identifier>DOI: 10.1116/1.1900734</identifier><identifier>CODEN: JVTBD9</identifier><language>eng</language><ispartof>Journal of Vacuum Science &amp; Technology B: Microelectronics and Nanometer Structures, 2005-05, Vol.23 (3), p.908-917</ispartof><rights>American Vacuum Society</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-68bed583ba6f1b8a481d432266775405687129f6ef05dc988a01b45a3865d8ec3</citedby><cites>FETCH-LOGICAL-c365t-68bed583ba6f1b8a481d432266775405687129f6ef05dc988a01b45a3865d8ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,4512,27924,27925</link.rule.ids></links><search><creatorcontrib>Lazzeri, P.</creatorcontrib><creatorcontrib>Vanzetti, L.</creatorcontrib><creatorcontrib>Anderle, M.</creatorcontrib><creatorcontrib>Bersani, M.</creatorcontrib><creatorcontrib>Park, J. J.</creatorcontrib><creatorcontrib>Lin, Z.</creatorcontrib><creatorcontrib>Briber, R. M.</creatorcontrib><creatorcontrib>Rubloff, G. W.</creatorcontrib><creatorcontrib>Kim, H. C.</creatorcontrib><creatorcontrib>Miller, R. D.</creatorcontrib><title>Thin-film transformations and volatile products in the formation of nanoporous low- k polymethylsilsesquioxane-based dielectric</title><title>Journal of Vacuum Science &amp; Technology B: Microelectronics and Nanometer Structures</title><description>The thermal transformation of spin-cast thin films to produce nanoporous low- k dielectric layers has been investigated using polymethysilsesquioxane (PMSSQ) for the low- k matrix and polymethylmethacrylate-co-dimethylaminoethylacrylate (PMMA-co-DMAEMA) as the porogen which is volatilized to leave nanopores in the matrix. Surface analysis methods, including time of flight-secondary ion mass spectrometry and x-ray photoelectron spectroscopy, and thin film analysis by small-angle neutron scattering revealed the kinetics of matrix crosslinking, while thermal desorption mass spectrometry showed the evolution of gaseous reaction products from porogen and matrix during the complex chemical transformations which occur with thermal cycling from 100 ° C to 450 ° C . Matrix crosslinking occurs primarily at lower temperatures ( 100 – 225 ° C ) , while porogen diffusion and decomposition begins somewhat above 200 ° C , leading to phase separation which creates the final nanoporous structure. Since matrix and porogen reaction kinetics have some overlap, relative kinetics can be important: e.g., matrix crosslinking proceeds more rapidly for PMSSQ precursors with high Si–OH content cf. low SiOH content, with implications for the morphology of porogen-derived nanostructure. As surface species transform (matrix crosslinking) and disappear (porogen volatilization), their complements are seen in the gas phase as reaction and decomposition products. Porogen decomposition is ligand selective, in that the N-containing ligand of DMAEMA is volatilized at considerably lower temperatures ( ∼ 200 ° C ) than that ( ∼ 400 ° C ) for the remaining species (the PMMA ligand and the common backbone for both PMMA and DMAEMA).</description><issn>0734-211X</issn><issn>1071-1023</issn><issn>1520-8567</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp90MtKAzEUBuAgCtbqwjfIViE1mUwy6VKKNyi4UXA3ZHKh0TQZk7Tala9ua0tdCK4O5_Dxw_kBOCd4RAjhV2RExhg3tD4AA8IqjATjzSEYbE6oIuTlGJzk_Iox5ozSAfh6mrmArPNzWJIM2cY0l8XFkKEMGi6jX2_ewD5FvVAlQxdgmRm4dzBaGGSIfUxxkaGPHwi-wT761dyU2cpn57PJ7wsXP2UwqJPZaKid8UaV5NQpOLJyLc52cwieb2-eJvdo-nj3MLmeIkU5K4iLzmgmaCe5JZ2QtSC6plXFedOwGjMuGlKNLTcWM63GQkhMuppJKjjTwig6BBfbXJVizsnYtk9uLtOqJbjdNNeSdtfc2l5ubVau_Dy5x8uYfmHba_sf_pv8DXJGf9o</recordid><startdate>20050501</startdate><enddate>20050501</enddate><creator>Lazzeri, P.</creator><creator>Vanzetti, L.</creator><creator>Anderle, M.</creator><creator>Bersani, M.</creator><creator>Park, J. J.</creator><creator>Lin, Z.</creator><creator>Briber, R. M.</creator><creator>Rubloff, G. W.</creator><creator>Kim, H. C.</creator><creator>Miller, R. D.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20050501</creationdate><title>Thin-film transformations and volatile products in the formation of nanoporous low- k polymethylsilsesquioxane-based dielectric</title><author>Lazzeri, P. ; Vanzetti, L. ; Anderle, M. ; Bersani, M. ; Park, J. J. ; Lin, Z. ; Briber, R. M. ; Rubloff, G. W. ; Kim, H. C. ; Miller, R. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-68bed583ba6f1b8a481d432266775405687129f6ef05dc988a01b45a3865d8ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Lazzeri, P.</creatorcontrib><creatorcontrib>Vanzetti, L.</creatorcontrib><creatorcontrib>Anderle, M.</creatorcontrib><creatorcontrib>Bersani, M.</creatorcontrib><creatorcontrib>Park, J. J.</creatorcontrib><creatorcontrib>Lin, Z.</creatorcontrib><creatorcontrib>Briber, R. M.</creatorcontrib><creatorcontrib>Rubloff, G. W.</creatorcontrib><creatorcontrib>Kim, H. C.</creatorcontrib><creatorcontrib>Miller, R. D.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of Vacuum Science &amp; Technology B: Microelectronics and Nanometer Structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lazzeri, P.</au><au>Vanzetti, L.</au><au>Anderle, M.</au><au>Bersani, M.</au><au>Park, J. J.</au><au>Lin, Z.</au><au>Briber, R. M.</au><au>Rubloff, G. W.</au><au>Kim, H. C.</au><au>Miller, R. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thin-film transformations and volatile products in the formation of nanoporous low- k polymethylsilsesquioxane-based dielectric</atitle><jtitle>Journal of Vacuum Science &amp; Technology B: Microelectronics and Nanometer Structures</jtitle><date>2005-05-01</date><risdate>2005</risdate><volume>23</volume><issue>3</issue><spage>908</spage><epage>917</epage><pages>908-917</pages><issn>0734-211X</issn><issn>1071-1023</issn><eissn>1520-8567</eissn><coden>JVTBD9</coden><abstract>The thermal transformation of spin-cast thin films to produce nanoporous low- k dielectric layers has been investigated using polymethysilsesquioxane (PMSSQ) for the low- k matrix and polymethylmethacrylate-co-dimethylaminoethylacrylate (PMMA-co-DMAEMA) as the porogen which is volatilized to leave nanopores in the matrix. Surface analysis methods, including time of flight-secondary ion mass spectrometry and x-ray photoelectron spectroscopy, and thin film analysis by small-angle neutron scattering revealed the kinetics of matrix crosslinking, while thermal desorption mass spectrometry showed the evolution of gaseous reaction products from porogen and matrix during the complex chemical transformations which occur with thermal cycling from 100 ° C to 450 ° C . Matrix crosslinking occurs primarily at lower temperatures ( 100 – 225 ° C ) , while porogen diffusion and decomposition begins somewhat above 200 ° C , leading to phase separation which creates the final nanoporous structure. Since matrix and porogen reaction kinetics have some overlap, relative kinetics can be important: e.g., matrix crosslinking proceeds more rapidly for PMSSQ precursors with high Si–OH content cf. low SiOH content, with implications for the morphology of porogen-derived nanostructure. As surface species transform (matrix crosslinking) and disappear (porogen volatilization), their complements are seen in the gas phase as reaction and decomposition products. Porogen decomposition is ligand selective, in that the N-containing ligand of DMAEMA is volatilized at considerably lower temperatures ( ∼ 200 ° C ) than that ( ∼ 400 ° C ) for the remaining species (the PMMA ligand and the common backbone for both PMMA and DMAEMA).</abstract><doi>10.1116/1.1900734</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0734-211X
ispartof Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 2005-05, Vol.23 (3), p.908-917
issn 0734-211X
1071-1023
1520-8567
language eng
recordid cdi_crossref_primary_10_1116_1_1900734
source AIP Journals Complete
title Thin-film transformations and volatile products in the formation of nanoporous low- k polymethylsilsesquioxane-based dielectric
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T16%3A50%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thin-film%20transformations%20and%20volatile%20products%20in%20the%20formation%20of%20nanoporous%20low-%20k%20polymethylsilsesquioxane-based%20dielectric&rft.jtitle=Journal%20of%20Vacuum%20Science%20&%20Technology%20B:%20Microelectronics%20and%20Nanometer%20Structures&rft.au=Lazzeri,%20P.&rft.date=2005-05-01&rft.volume=23&rft.issue=3&rft.spage=908&rft.epage=917&rft.pages=908-917&rft.issn=0734-211X&rft.eissn=1520-8567&rft.coden=JVTBD9&rft_id=info:doi/10.1116/1.1900734&rft_dat=%3Cscitation_cross%3Escitation_primary_10_1116_1_1900734%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true