Secondary ion mass spectrometry analysis of implanted and rapid thermal processing annealed wafers for sub-100 nanometer technology

The characterization of ultrashallow junctions after implantation and subsequent rapid thermal processing (RTP) annealing is usually done in two ways. The sheet resistance of the junction is measured with a four-point probe and junction depth and dose are evaluated via secondary ion mass spectrometr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 2004-01, Vol.22 (1), p.346-349
Hauptverfasser: Ehrke, U., Sears, A., Lerch, W., Paul, S., Roters, G., Downey, D. F., Arevalo, E. A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 349
container_issue 1
container_start_page 346
container_title Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures
container_volume 22
creator Ehrke, U.
Sears, A.
Lerch, W.
Paul, S.
Roters, G.
Downey, D. F.
Arevalo, E. A.
description The characterization of ultrashallow junctions after implantation and subsequent rapid thermal processing (RTP) annealing is usually done in two ways. The sheet resistance of the junction is measured with a four-point probe and junction depth and dose are evaluated via secondary ion mass spectrometry (SIMS). After ultralow energy beamline implantation in a Varian VIISta 80 single wafer high current implanter the subsequent spike anneal for maximum activation and minimal diffusion was carried out on a Mattson 3000 Plus equipped with the flash-anneal controller. Junction depth profiling was done to monitor the influence of implant conditions and RTP annealing parameters. Measurements of junction depth, total dose, activated dose and uniformity were carried out on FEI Quadrupole SIMS tools. Queued measurements were performed on full wafers and small samples. Calibration of both junction depth and retained dose will be discussed. At very low beam energies (250 eV, oxygen, normal incidence) valuable information about depth profile shape, near surface concentration, and activated dose were obtained.
doi_str_mv 10.1116/1.1633284
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1116_1_1633284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1116_1_1633284</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-18f03a90dab3191b67e78f2037358f04d533f60e3b7d4e7ba04ed4443fe36303</originalsourceid><addsrcrecordid>eNp9kE1LAzEYhIMoWKsH_0GuCluTTXazPUrxCwoe7MHb8u7mTbuymyxJVHr2j5vSogfB08DMw8AMIZeczTjn5Q2f8VKIvJJHZMKLnGVVUapjMmFKyCzn_PWUnIXwxhgrCyEm5OsFW2c1-C3tnKUDhEDDiG30bsCYXLDQb0MXqDO0G8YebESdXE09jJ2mcYN-gJ6O3rUYQmfXKbQIfaI-waAP1DhPw3uTccaoBbsrRk8jthvrerfenpMTA33Ai4NOyer-brV4zJbPD0-L22XW5nMVM14ZJmDONDSCz3lTKlSVyZlQokiR1GmQKRmKRmmJqgEmUUsphUFRCiam5Gpf23oXgkdTj74b0vKas3p3Xs3rw3mJvd6zoe0ixHTND_zh_C9Yj9r8B_9t_gYeAIAG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Secondary ion mass spectrometry analysis of implanted and rapid thermal processing annealed wafers for sub-100 nanometer technology</title><source>AIP Journals Complete</source><creator>Ehrke, U. ; Sears, A. ; Lerch, W. ; Paul, S. ; Roters, G. ; Downey, D. F. ; Arevalo, E. A.</creator><creatorcontrib>Ehrke, U. ; Sears, A. ; Lerch, W. ; Paul, S. ; Roters, G. ; Downey, D. F. ; Arevalo, E. A.</creatorcontrib><description>The characterization of ultrashallow junctions after implantation and subsequent rapid thermal processing (RTP) annealing is usually done in two ways. The sheet resistance of the junction is measured with a four-point probe and junction depth and dose are evaluated via secondary ion mass spectrometry (SIMS). After ultralow energy beamline implantation in a Varian VIISta 80 single wafer high current implanter the subsequent spike anneal for maximum activation and minimal diffusion was carried out on a Mattson 3000 Plus equipped with the flash-anneal controller. Junction depth profiling was done to monitor the influence of implant conditions and RTP annealing parameters. Measurements of junction depth, total dose, activated dose and uniformity were carried out on FEI Quadrupole SIMS tools. Queued measurements were performed on full wafers and small samples. Calibration of both junction depth and retained dose will be discussed. At very low beam energies (250 eV, oxygen, normal incidence) valuable information about depth profile shape, near surface concentration, and activated dose were obtained.</description><identifier>ISSN: 0734-211X</identifier><identifier>ISSN: 1071-1023</identifier><identifier>EISSN: 1520-8567</identifier><identifier>DOI: 10.1116/1.1633284</identifier><identifier>CODEN: JVTBD9</identifier><language>eng</language><ispartof>Journal of Vacuum Science &amp; Technology B: Microelectronics and Nanometer Structures, 2004-01, Vol.22 (1), p.346-349</ispartof><rights>American Vacuum Society</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-18f03a90dab3191b67e78f2037358f04d533f60e3b7d4e7ba04ed4443fe36303</citedby><cites>FETCH-LOGICAL-c297t-18f03a90dab3191b67e78f2037358f04d533f60e3b7d4e7ba04ed4443fe36303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925</link.rule.ids></links><search><creatorcontrib>Ehrke, U.</creatorcontrib><creatorcontrib>Sears, A.</creatorcontrib><creatorcontrib>Lerch, W.</creatorcontrib><creatorcontrib>Paul, S.</creatorcontrib><creatorcontrib>Roters, G.</creatorcontrib><creatorcontrib>Downey, D. F.</creatorcontrib><creatorcontrib>Arevalo, E. A.</creatorcontrib><title>Secondary ion mass spectrometry analysis of implanted and rapid thermal processing annealed wafers for sub-100 nanometer technology</title><title>Journal of Vacuum Science &amp; Technology B: Microelectronics and Nanometer Structures</title><description>The characterization of ultrashallow junctions after implantation and subsequent rapid thermal processing (RTP) annealing is usually done in two ways. The sheet resistance of the junction is measured with a four-point probe and junction depth and dose are evaluated via secondary ion mass spectrometry (SIMS). After ultralow energy beamline implantation in a Varian VIISta 80 single wafer high current implanter the subsequent spike anneal for maximum activation and minimal diffusion was carried out on a Mattson 3000 Plus equipped with the flash-anneal controller. Junction depth profiling was done to monitor the influence of implant conditions and RTP annealing parameters. Measurements of junction depth, total dose, activated dose and uniformity were carried out on FEI Quadrupole SIMS tools. Queued measurements were performed on full wafers and small samples. Calibration of both junction depth and retained dose will be discussed. At very low beam energies (250 eV, oxygen, normal incidence) valuable information about depth profile shape, near surface concentration, and activated dose were obtained.</description><issn>0734-211X</issn><issn>1071-1023</issn><issn>1520-8567</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEYhIMoWKsH_0GuCluTTXazPUrxCwoe7MHb8u7mTbuymyxJVHr2j5vSogfB08DMw8AMIZeczTjn5Q2f8VKIvJJHZMKLnGVVUapjMmFKyCzn_PWUnIXwxhgrCyEm5OsFW2c1-C3tnKUDhEDDiG30bsCYXLDQb0MXqDO0G8YebESdXE09jJ2mcYN-gJ6O3rUYQmfXKbQIfaI-waAP1DhPw3uTccaoBbsrRk8jthvrerfenpMTA33Ai4NOyer-brV4zJbPD0-L22XW5nMVM14ZJmDONDSCz3lTKlSVyZlQokiR1GmQKRmKRmmJqgEmUUsphUFRCiam5Gpf23oXgkdTj74b0vKas3p3Xs3rw3mJvd6zoe0ixHTND_zh_C9Yj9r8B_9t_gYeAIAG</recordid><startdate>200401</startdate><enddate>200401</enddate><creator>Ehrke, U.</creator><creator>Sears, A.</creator><creator>Lerch, W.</creator><creator>Paul, S.</creator><creator>Roters, G.</creator><creator>Downey, D. F.</creator><creator>Arevalo, E. A.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200401</creationdate><title>Secondary ion mass spectrometry analysis of implanted and rapid thermal processing annealed wafers for sub-100 nanometer technology</title><author>Ehrke, U. ; Sears, A. ; Lerch, W. ; Paul, S. ; Roters, G. ; Downey, D. F. ; Arevalo, E. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-18f03a90dab3191b67e78f2037358f04d533f60e3b7d4e7ba04ed4443fe36303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Ehrke, U.</creatorcontrib><creatorcontrib>Sears, A.</creatorcontrib><creatorcontrib>Lerch, W.</creatorcontrib><creatorcontrib>Paul, S.</creatorcontrib><creatorcontrib>Roters, G.</creatorcontrib><creatorcontrib>Downey, D. F.</creatorcontrib><creatorcontrib>Arevalo, E. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of Vacuum Science &amp; Technology B: Microelectronics and Nanometer Structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ehrke, U.</au><au>Sears, A.</au><au>Lerch, W.</au><au>Paul, S.</au><au>Roters, G.</au><au>Downey, D. F.</au><au>Arevalo, E. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Secondary ion mass spectrometry analysis of implanted and rapid thermal processing annealed wafers for sub-100 nanometer technology</atitle><jtitle>Journal of Vacuum Science &amp; Technology B: Microelectronics and Nanometer Structures</jtitle><date>2004-01</date><risdate>2004</risdate><volume>22</volume><issue>1</issue><spage>346</spage><epage>349</epage><pages>346-349</pages><issn>0734-211X</issn><issn>1071-1023</issn><eissn>1520-8567</eissn><coden>JVTBD9</coden><abstract>The characterization of ultrashallow junctions after implantation and subsequent rapid thermal processing (RTP) annealing is usually done in two ways. The sheet resistance of the junction is measured with a four-point probe and junction depth and dose are evaluated via secondary ion mass spectrometry (SIMS). After ultralow energy beamline implantation in a Varian VIISta 80 single wafer high current implanter the subsequent spike anneal for maximum activation and minimal diffusion was carried out on a Mattson 3000 Plus equipped with the flash-anneal controller. Junction depth profiling was done to monitor the influence of implant conditions and RTP annealing parameters. Measurements of junction depth, total dose, activated dose and uniformity were carried out on FEI Quadrupole SIMS tools. Queued measurements were performed on full wafers and small samples. Calibration of both junction depth and retained dose will be discussed. At very low beam energies (250 eV, oxygen, normal incidence) valuable information about depth profile shape, near surface concentration, and activated dose were obtained.</abstract><doi>10.1116/1.1633284</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0734-211X
ispartof Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 2004-01, Vol.22 (1), p.346-349
issn 0734-211X
1071-1023
1520-8567
language eng
recordid cdi_crossref_primary_10_1116_1_1633284
source AIP Journals Complete
title Secondary ion mass spectrometry analysis of implanted and rapid thermal processing annealed wafers for sub-100 nanometer technology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A07%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Secondary%20ion%20mass%20spectrometry%20analysis%20of%20implanted%20and%20rapid%20thermal%20processing%20annealed%20wafers%20for%20sub-100%20nanometer%20technology&rft.jtitle=Journal%20of%20Vacuum%20Science%20&%20Technology%20B:%20Microelectronics%20and%20Nanometer%20Structures&rft.au=Ehrke,%20U.&rft.date=2004-01&rft.volume=22&rft.issue=1&rft.spage=346&rft.epage=349&rft.pages=346-349&rft.issn=0734-211X&rft.eissn=1520-8567&rft.coden=JVTBD9&rft_id=info:doi/10.1116/1.1633284&rft_dat=%3Cscitation_cross%3Escitation_primary_10_1116_1_1633284%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true