Hydrocarbon thin films produced from adamantane–diamond surface deposition: Molecular dynamics simulations

Atomistic simulations are used to study thin-film growth through the deposition of beams of adamantane molecules on hydrogen-terminated diamond (111) surfaces. A range of incident velocities from 13 to 17 km/s (corresponding to kinetic energies of 119–204 eV/molecule) are considered that fall in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of vacuum science & technology. A, Vacuum, surfaces, and films Vacuum, surfaces, and films, 2001-01, Vol.19 (1), p.262-266
Hauptverfasser: Plaisted, Thomas A., Sinnott, Susan B.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 266
container_issue 1
container_start_page 262
container_title Journal of vacuum science & technology. A, Vacuum, surfaces, and films
container_volume 19
creator Plaisted, Thomas A.
Sinnott, Susan B.
description Atomistic simulations are used to study thin-film growth through the deposition of beams of adamantane molecules on hydrogen-terminated diamond (111) surfaces. A range of incident velocities from 13 to 17 km/s (corresponding to kinetic energies of 119–204 eV/molecule) are considered that fall in the hyperthermal energy region for particle deposition on surfaces. The forces on the atoms in the simulations are calculated using a many-body reactive empirical potential for hydrocarbons. During the deposition process the adamantane molecules react with one another and the surface to form hydrocarbon thin films that are primarily polymeric with the amount of adhesion depending strongly on incident energy. Despite the fact that the carbon atoms in the adamantane molecules are fully sp 3 hybridized, the films contain primarily sp 2 hybridized carbon with the percentage of sp 2 hybridization increasing as the incident velocity goes up. These results are compared with the predictions of simulations that examine the deposition of ethylene molecular and cluster beams.
doi_str_mv 10.1116/1.1335683
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1116_1_1335683</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1116_1_1335683</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-ea836533bb6c0030c5ca19cd13de773122948171c1d6f388299ef0e0d16e6a873</originalsourceid><addsrcrecordid>eNqdkM9KAzEYxIMoWKsH3yBXha3fl3SzWW9SrBUqXvS8pPmDkd1kSbZCb76Db-iT2NqCd08DMz-GYQi5RJggorjBCXJeCsmPyAhLBoUsy_qYjKDi04Ih4Ck5y_kdABgDMSLtYmNS1CqtYqDDmw_U-bbLtE_RrLU11KXYUWVUp8Kggv3-_DJedTEYmtfJKW2psX3MfvAx3NKn2Fq9blWiZhNU53Wm2XdbYxfnc3LiVJvtxUHH5HV-_zJbFMvnh8fZ3bLQrK6GwirJRcn5aiU0AAddaoW1NsiNrSqOjNVTiRVqNMJxKVldWwcWDAorlKz4mFzte3WKOSfrmj75TqVNg9DsbmqwOdy0Za_3bNZ--J35P_gjpj-w6Y3jP-85eT0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hydrocarbon thin films produced from adamantane–diamond surface deposition: Molecular dynamics simulations</title><source>American Institute of Physics</source><creator>Plaisted, Thomas A. ; Sinnott, Susan B.</creator><creatorcontrib>Plaisted, Thomas A. ; Sinnott, Susan B.</creatorcontrib><description>Atomistic simulations are used to study thin-film growth through the deposition of beams of adamantane molecules on hydrogen-terminated diamond (111) surfaces. A range of incident velocities from 13 to 17 km/s (corresponding to kinetic energies of 119–204 eV/molecule) are considered that fall in the hyperthermal energy region for particle deposition on surfaces. The forces on the atoms in the simulations are calculated using a many-body reactive empirical potential for hydrocarbons. During the deposition process the adamantane molecules react with one another and the surface to form hydrocarbon thin films that are primarily polymeric with the amount of adhesion depending strongly on incident energy. Despite the fact that the carbon atoms in the adamantane molecules are fully sp 3 hybridized, the films contain primarily sp 2 hybridized carbon with the percentage of sp 2 hybridization increasing as the incident velocity goes up. These results are compared with the predictions of simulations that examine the deposition of ethylene molecular and cluster beams.</description><identifier>ISSN: 0734-2101</identifier><identifier>EISSN: 1520-8559</identifier><identifier>DOI: 10.1116/1.1335683</identifier><identifier>CODEN: JVTAD6</identifier><language>eng</language><ispartof>Journal of vacuum science &amp; technology. A, Vacuum, surfaces, and films, 2001-01, Vol.19 (1), p.262-266</ispartof><rights>American Vacuum Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-ea836533bb6c0030c5ca19cd13de773122948171c1d6f388299ef0e0d16e6a873</citedby><cites>FETCH-LOGICAL-c297t-ea836533bb6c0030c5ca19cd13de773122948171c1d6f388299ef0e0d16e6a873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,4512,27924,27925</link.rule.ids></links><search><creatorcontrib>Plaisted, Thomas A.</creatorcontrib><creatorcontrib>Sinnott, Susan B.</creatorcontrib><title>Hydrocarbon thin films produced from adamantane–diamond surface deposition: Molecular dynamics simulations</title><title>Journal of vacuum science &amp; technology. A, Vacuum, surfaces, and films</title><description>Atomistic simulations are used to study thin-film growth through the deposition of beams of adamantane molecules on hydrogen-terminated diamond (111) surfaces. A range of incident velocities from 13 to 17 km/s (corresponding to kinetic energies of 119–204 eV/molecule) are considered that fall in the hyperthermal energy region for particle deposition on surfaces. The forces on the atoms in the simulations are calculated using a many-body reactive empirical potential for hydrocarbons. During the deposition process the adamantane molecules react with one another and the surface to form hydrocarbon thin films that are primarily polymeric with the amount of adhesion depending strongly on incident energy. Despite the fact that the carbon atoms in the adamantane molecules are fully sp 3 hybridized, the films contain primarily sp 2 hybridized carbon with the percentage of sp 2 hybridization increasing as the incident velocity goes up. These results are compared with the predictions of simulations that examine the deposition of ethylene molecular and cluster beams.</description><issn>0734-2101</issn><issn>1520-8559</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqdkM9KAzEYxIMoWKsH3yBXha3fl3SzWW9SrBUqXvS8pPmDkd1kSbZCb76Db-iT2NqCd08DMz-GYQi5RJggorjBCXJeCsmPyAhLBoUsy_qYjKDi04Ih4Ck5y_kdABgDMSLtYmNS1CqtYqDDmw_U-bbLtE_RrLU11KXYUWVUp8Kggv3-_DJedTEYmtfJKW2psX3MfvAx3NKn2Fq9blWiZhNU53Wm2XdbYxfnc3LiVJvtxUHH5HV-_zJbFMvnh8fZ3bLQrK6GwirJRcn5aiU0AAddaoW1NsiNrSqOjNVTiRVqNMJxKVldWwcWDAorlKz4mFzte3WKOSfrmj75TqVNg9DsbmqwOdy0Za_3bNZ--J35P_gjpj-w6Y3jP-85eT0</recordid><startdate>200101</startdate><enddate>200101</enddate><creator>Plaisted, Thomas A.</creator><creator>Sinnott, Susan B.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200101</creationdate><title>Hydrocarbon thin films produced from adamantane–diamond surface deposition: Molecular dynamics simulations</title><author>Plaisted, Thomas A. ; Sinnott, Susan B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-ea836533bb6c0030c5ca19cd13de773122948171c1d6f388299ef0e0d16e6a873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Plaisted, Thomas A.</creatorcontrib><creatorcontrib>Sinnott, Susan B.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of vacuum science &amp; technology. A, Vacuum, surfaces, and films</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Plaisted, Thomas A.</au><au>Sinnott, Susan B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrocarbon thin films produced from adamantane–diamond surface deposition: Molecular dynamics simulations</atitle><jtitle>Journal of vacuum science &amp; technology. A, Vacuum, surfaces, and films</jtitle><date>2001-01</date><risdate>2001</risdate><volume>19</volume><issue>1</issue><spage>262</spage><epage>266</epage><pages>262-266</pages><issn>0734-2101</issn><eissn>1520-8559</eissn><coden>JVTAD6</coden><abstract>Atomistic simulations are used to study thin-film growth through the deposition of beams of adamantane molecules on hydrogen-terminated diamond (111) surfaces. A range of incident velocities from 13 to 17 km/s (corresponding to kinetic energies of 119–204 eV/molecule) are considered that fall in the hyperthermal energy region for particle deposition on surfaces. The forces on the atoms in the simulations are calculated using a many-body reactive empirical potential for hydrocarbons. During the deposition process the adamantane molecules react with one another and the surface to form hydrocarbon thin films that are primarily polymeric with the amount of adhesion depending strongly on incident energy. Despite the fact that the carbon atoms in the adamantane molecules are fully sp 3 hybridized, the films contain primarily sp 2 hybridized carbon with the percentage of sp 2 hybridization increasing as the incident velocity goes up. These results are compared with the predictions of simulations that examine the deposition of ethylene molecular and cluster beams.</abstract><doi>10.1116/1.1335683</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0734-2101
ispartof Journal of vacuum science & technology. A, Vacuum, surfaces, and films, 2001-01, Vol.19 (1), p.262-266
issn 0734-2101
1520-8559
language eng
recordid cdi_crossref_primary_10_1116_1_1335683
source American Institute of Physics
title Hydrocarbon thin films produced from adamantane–diamond surface deposition: Molecular dynamics simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T10%3A21%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrocarbon%20thin%20films%20produced%20from%20adamantane%E2%80%93diamond%20surface%20deposition:%20Molecular%20dynamics%20simulations&rft.jtitle=Journal%20of%20vacuum%20science%20&%20technology.%20A,%20Vacuum,%20surfaces,%20and%20films&rft.au=Plaisted,%20Thomas%20A.&rft.date=2001-01&rft.volume=19&rft.issue=1&rft.spage=262&rft.epage=266&rft.pages=262-266&rft.issn=0734-2101&rft.eissn=1520-8559&rft.coden=JVTAD6&rft_id=info:doi/10.1116/1.1335683&rft_dat=%3Cscitation_cross%3Escitation_primary_10_1116_1_1335683%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true