ROUGHNESS EFFECTS ON DENSE-GAS TURBINE FLOW: COMPARISON OF EXPERIMENTS AND SIMULATIONS

This paper presents a combined numerical and experimental study of the high-subsonic organic vapor flow in a linear turbine cascade. The profile geometry is the well-documented LS59 highly-loaded rotor blade and the working fluid is Novec649, a dense gas used in organic Rankine cycles. Large-eddy si...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of turbomachinery 2024-12, p.1-14
Hauptverfasser: Gloerfelt, Xavier, Hake, Leander, Bienner, Aurélien, Matar, Camille, Cinnella, Paola, aus der Wiesche, Stefan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue
container_start_page 1
container_title Journal of turbomachinery
container_volume
creator Gloerfelt, Xavier
Hake, Leander
Bienner, Aurélien
Matar, Camille
Cinnella, Paola
aus der Wiesche, Stefan
description This paper presents a combined numerical and experimental study of the high-subsonic organic vapor flow in a linear turbine cascade. The profile geometry is the well-documented LS59 highly-loaded rotor blade and the working fluid is Novec649, a dense gas used in organic Rankine cycles. Large-eddy simulations are carried out with and without the roughness introduced by the additive manufacturing process. The results for the rough blade are in fair agreement with experiments, while the smooth surface induces a change in the vortex shedding regime. A detached shedding, characterized by a long recirculation downstream of the trailing edge and a base-pressure plateau, is obtained in the experiments and by discretizing the roughness in the simulation. By contrast, a transonic vortex shedding is established when the surface is smooth: intense vortices roll up immediately after the trailing edge, yielding a short bubble and a lattice of shock waves. A strong pressure drop is observed at the trailing edge, resulting in high profile losses. In both cases, the boundary layer is turbulent ahead of the separation but its thickness is significantly greater in the rough configuration, which may be the reason for the change of regime.
doi_str_mv 10.1115/1.4067443
format Article
fullrecord <record><control><sourceid>asme_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1115_1_4067443</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1210453</sourcerecordid><originalsourceid>FETCH-LOGICAL-a553-15044d51a5c80c7f67aa4d591522e150d79c39be019d5de27320a1b1fe4443223</originalsourceid><addsrcrecordid>eNotkD1PwzAQhi0EEqUwsDN4ZUjx-aNJ2ELqtJFSu4pT6Ga5iSNRUUCJGPj3GLXT6XTPnZ57EboHMgMA8QQzTuYx5-wCTUDQJEpSQi7RhCRJGgnCd9foZhwPhABjgk_Qa623y5WSxmBZFDJvDNYKL6QyMlpmBjfb-qVUEheVfnvGuV5vsro0AdEFlruNrMu1VGEpUwtsyvW2yppSK3OLrnr3Mfq7c52ippBNvooqvSzzrIqcECyCIMQ7AU60CWnjfh47F_o0iFMfhl2ctizdewJpJzpPY0aJgz30nocPKWVT9Hg62w5f4zj43n4P70c3_Fog9j8PC_acR2AfTqwbj94evn6Gz2BmgQLhgrE_rY9SmQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>ROUGHNESS EFFECTS ON DENSE-GAS TURBINE FLOW: COMPARISON OF EXPERIMENTS AND SIMULATIONS</title><source>ASME Transactions Journals (Current)</source><creator>Gloerfelt, Xavier ; Hake, Leander ; Bienner, Aurélien ; Matar, Camille ; Cinnella, Paola ; aus der Wiesche, Stefan</creator><creatorcontrib>Gloerfelt, Xavier ; Hake, Leander ; Bienner, Aurélien ; Matar, Camille ; Cinnella, Paola ; aus der Wiesche, Stefan</creatorcontrib><description>This paper presents a combined numerical and experimental study of the high-subsonic organic vapor flow in a linear turbine cascade. The profile geometry is the well-documented LS59 highly-loaded rotor blade and the working fluid is Novec649, a dense gas used in organic Rankine cycles. Large-eddy simulations are carried out with and without the roughness introduced by the additive manufacturing process. The results for the rough blade are in fair agreement with experiments, while the smooth surface induces a change in the vortex shedding regime. A detached shedding, characterized by a long recirculation downstream of the trailing edge and a base-pressure plateau, is obtained in the experiments and by discretizing the roughness in the simulation. By contrast, a transonic vortex shedding is established when the surface is smooth: intense vortices roll up immediately after the trailing edge, yielding a short bubble and a lattice of shock waves. A strong pressure drop is observed at the trailing edge, resulting in high profile losses. In both cases, the boundary layer is turbulent ahead of the separation but its thickness is significantly greater in the rough configuration, which may be the reason for the change of regime.</description><identifier>ISSN: 0889-504X</identifier><identifier>EISSN: 1528-8900</identifier><identifier>DOI: 10.1115/1.4067443</identifier><language>eng</language><ispartof>Journal of turbomachinery, 2024-12, p.1-14</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923,38518</link.rule.ids></links><search><creatorcontrib>Gloerfelt, Xavier</creatorcontrib><creatorcontrib>Hake, Leander</creatorcontrib><creatorcontrib>Bienner, Aurélien</creatorcontrib><creatorcontrib>Matar, Camille</creatorcontrib><creatorcontrib>Cinnella, Paola</creatorcontrib><creatorcontrib>aus der Wiesche, Stefan</creatorcontrib><title>ROUGHNESS EFFECTS ON DENSE-GAS TURBINE FLOW: COMPARISON OF EXPERIMENTS AND SIMULATIONS</title><title>Journal of turbomachinery</title><addtitle>J. Turbomach</addtitle><description>This paper presents a combined numerical and experimental study of the high-subsonic organic vapor flow in a linear turbine cascade. The profile geometry is the well-documented LS59 highly-loaded rotor blade and the working fluid is Novec649, a dense gas used in organic Rankine cycles. Large-eddy simulations are carried out with and without the roughness introduced by the additive manufacturing process. The results for the rough blade are in fair agreement with experiments, while the smooth surface induces a change in the vortex shedding regime. A detached shedding, characterized by a long recirculation downstream of the trailing edge and a base-pressure plateau, is obtained in the experiments and by discretizing the roughness in the simulation. By contrast, a transonic vortex shedding is established when the surface is smooth: intense vortices roll up immediately after the trailing edge, yielding a short bubble and a lattice of shock waves. A strong pressure drop is observed at the trailing edge, resulting in high profile losses. In both cases, the boundary layer is turbulent ahead of the separation but its thickness is significantly greater in the rough configuration, which may be the reason for the change of regime.</description><issn>0889-504X</issn><issn>1528-8900</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkD1PwzAQhi0EEqUwsDN4ZUjx-aNJ2ELqtJFSu4pT6Ga5iSNRUUCJGPj3GLXT6XTPnZ57EboHMgMA8QQzTuYx5-wCTUDQJEpSQi7RhCRJGgnCd9foZhwPhABjgk_Qa623y5WSxmBZFDJvDNYKL6QyMlpmBjfb-qVUEheVfnvGuV5vsro0AdEFlruNrMu1VGEpUwtsyvW2yppSK3OLrnr3Mfq7c52ippBNvooqvSzzrIqcECyCIMQ7AU60CWnjfh47F_o0iFMfhl2ctizdewJpJzpPY0aJgz30nocPKWVT9Hg62w5f4zj43n4P70c3_Fog9j8PC_acR2AfTqwbj94evn6Gz2BmgQLhgrE_rY9SmQ</recordid><startdate>20241213</startdate><enddate>20241213</enddate><creator>Gloerfelt, Xavier</creator><creator>Hake, Leander</creator><creator>Bienner, Aurélien</creator><creator>Matar, Camille</creator><creator>Cinnella, Paola</creator><creator>aus der Wiesche, Stefan</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241213</creationdate><title>ROUGHNESS EFFECTS ON DENSE-GAS TURBINE FLOW: COMPARISON OF EXPERIMENTS AND SIMULATIONS</title><author>Gloerfelt, Xavier ; Hake, Leander ; Bienner, Aurélien ; Matar, Camille ; Cinnella, Paola ; aus der Wiesche, Stefan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a553-15044d51a5c80c7f67aa4d591522e150d79c39be019d5de27320a1b1fe4443223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gloerfelt, Xavier</creatorcontrib><creatorcontrib>Hake, Leander</creatorcontrib><creatorcontrib>Bienner, Aurélien</creatorcontrib><creatorcontrib>Matar, Camille</creatorcontrib><creatorcontrib>Cinnella, Paola</creatorcontrib><creatorcontrib>aus der Wiesche, Stefan</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of turbomachinery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gloerfelt, Xavier</au><au>Hake, Leander</au><au>Bienner, Aurélien</au><au>Matar, Camille</au><au>Cinnella, Paola</au><au>aus der Wiesche, Stefan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ROUGHNESS EFFECTS ON DENSE-GAS TURBINE FLOW: COMPARISON OF EXPERIMENTS AND SIMULATIONS</atitle><jtitle>Journal of turbomachinery</jtitle><stitle>J. Turbomach</stitle><date>2024-12-13</date><risdate>2024</risdate><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>0889-504X</issn><eissn>1528-8900</eissn><abstract>This paper presents a combined numerical and experimental study of the high-subsonic organic vapor flow in a linear turbine cascade. The profile geometry is the well-documented LS59 highly-loaded rotor blade and the working fluid is Novec649, a dense gas used in organic Rankine cycles. Large-eddy simulations are carried out with and without the roughness introduced by the additive manufacturing process. The results for the rough blade are in fair agreement with experiments, while the smooth surface induces a change in the vortex shedding regime. A detached shedding, characterized by a long recirculation downstream of the trailing edge and a base-pressure plateau, is obtained in the experiments and by discretizing the roughness in the simulation. By contrast, a transonic vortex shedding is established when the surface is smooth: intense vortices roll up immediately after the trailing edge, yielding a short bubble and a lattice of shock waves. A strong pressure drop is observed at the trailing edge, resulting in high profile losses. In both cases, the boundary layer is turbulent ahead of the separation but its thickness is significantly greater in the rough configuration, which may be the reason for the change of regime.</abstract><doi>10.1115/1.4067443</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0889-504X
ispartof Journal of turbomachinery, 2024-12, p.1-14
issn 0889-504X
1528-8900
language eng
recordid cdi_crossref_primary_10_1115_1_4067443
source ASME Transactions Journals (Current)
title ROUGHNESS EFFECTS ON DENSE-GAS TURBINE FLOW: COMPARISON OF EXPERIMENTS AND SIMULATIONS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T20%3A39%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-asme_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ROUGHNESS%20EFFECTS%20ON%20DENSE-GAS%20TURBINE%20FLOW:%20COMPARISON%20OF%20EXPERIMENTS%20AND%20SIMULATIONS&rft.jtitle=Journal%20of%20turbomachinery&rft.au=Gloerfelt,%20Xavier&rft.date=2024-12-13&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=0889-504X&rft.eissn=1528-8900&rft_id=info:doi/10.1115/1.4067443&rft_dat=%3Casme_cross%3E1210453%3C/asme_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true