An Anti-Erosion Cylindrical Surface Incorporating Two Bionic Elements

Erosion is an inevitable and persistent form of wear, which predominantly occurs on curved surfaces within the realm of fluid machinery. To address this issue, we have developed a novel model incorporating two bionic elements, namely bionic arrangement and bionic morphology, and applied it to explor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of tribology 2025-03, Vol.147 (3)
Hauptverfasser: Yu, Haiyue, Sun, Kaixin, Shao, Leitong, Zhang, Junqiu, Han, Zhiwu
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Journal of tribology
container_volume 147
creator Yu, Haiyue
Sun, Kaixin
Shao, Leitong
Zhang, Junqiu
Han, Zhiwu
description Erosion is an inevitable and persistent form of wear, which predominantly occurs on curved surfaces within the realm of fluid machinery. To address this issue, we have developed a novel model incorporating two bionic elements, namely bionic arrangement and bionic morphology, and applied it to explore the erosion resistance of cylindrical surfaces. Specifically, the bionic arrangement is inspired by the phyllotaxis arrangement observed in plants, while the bionic morphology involves the incorporation of convex unit morphology found in desert organisms. Employing a comprehensive approach encompassing erosion testing and numerical analysis, we established two comparative test groups that differed in terms of arrangement and distribution density. This comprehensive analysis sheds light on the erosion resistance mechanism inherent in the combined bionic model. The findings of this study hold significant theoretical implications for the advancement of bionic anti-erosion technology and its practical applications in engineering.
doi_str_mv 10.1115/1.4066864
format Article
fullrecord <record><control><sourceid>asme_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1115_1_4066864</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1207252</sourcerecordid><originalsourceid>FETCH-LOGICAL-a554-acca122a5bd4756a00fcb874d4b24394926f069f9e7fdecd16caf3cf80162aaa3</originalsourceid><addsrcrecordid>eNotj71LAzEchoMoeFYHd4esDlfzndxYy1ULBQe7h9_lEkm55krSIv3vPWmnd3l4eR6EnimZU0rlG50LopRR4gZVVDJTG9PoW1QRLVgttNH36KGUHSGUc8kr1C4SXqRjrNs8ljgmvDwPMfU5Ohjw9ykHcB6vkxvzYcxwjOkHb39H_D6h0eF28HufjuUR3QUYin-67gxtV-12-Vlvvj7Wy8WmBilFDc4BZQxk1wstFRASXGe06EXHBG9Ew1QgqgmN16H3rqfKQeAuGEIVAwA-Q6-XWzfJluyDPeS4h3y2lNj_fEvtNX9iXy4slL23u_GU02RmKSOaScb_AFJZVhs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An Anti-Erosion Cylindrical Surface Incorporating Two Bionic Elements</title><source>ASME Transactions Journals (Current)</source><creator>Yu, Haiyue ; Sun, Kaixin ; Shao, Leitong ; Zhang, Junqiu ; Han, Zhiwu</creator><creatorcontrib>Yu, Haiyue ; Sun, Kaixin ; Shao, Leitong ; Zhang, Junqiu ; Han, Zhiwu</creatorcontrib><description>Erosion is an inevitable and persistent form of wear, which predominantly occurs on curved surfaces within the realm of fluid machinery. To address this issue, we have developed a novel model incorporating two bionic elements, namely bionic arrangement and bionic morphology, and applied it to explore the erosion resistance of cylindrical surfaces. Specifically, the bionic arrangement is inspired by the phyllotaxis arrangement observed in plants, while the bionic morphology involves the incorporation of convex unit morphology found in desert organisms. Employing a comprehensive approach encompassing erosion testing and numerical analysis, we established two comparative test groups that differed in terms of arrangement and distribution density. This comprehensive analysis sheds light on the erosion resistance mechanism inherent in the combined bionic model. The findings of this study hold significant theoretical implications for the advancement of bionic anti-erosion technology and its practical applications in engineering.</description><identifier>ISSN: 0742-4787</identifier><identifier>EISSN: 1528-8897</identifier><identifier>DOI: 10.1115/1.4066864</identifier><language>eng</language><publisher>ASME</publisher><ispartof>Journal of tribology, 2025-03, Vol.147 (3)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a554-acca122a5bd4756a00fcb874d4b24394926f069f9e7fdecd16caf3cf80162aaa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902,38497</link.rule.ids></links><search><creatorcontrib>Yu, Haiyue</creatorcontrib><creatorcontrib>Sun, Kaixin</creatorcontrib><creatorcontrib>Shao, Leitong</creatorcontrib><creatorcontrib>Zhang, Junqiu</creatorcontrib><creatorcontrib>Han, Zhiwu</creatorcontrib><title>An Anti-Erosion Cylindrical Surface Incorporating Two Bionic Elements</title><title>Journal of tribology</title><addtitle>J. Tribol</addtitle><description>Erosion is an inevitable and persistent form of wear, which predominantly occurs on curved surfaces within the realm of fluid machinery. To address this issue, we have developed a novel model incorporating two bionic elements, namely bionic arrangement and bionic morphology, and applied it to explore the erosion resistance of cylindrical surfaces. Specifically, the bionic arrangement is inspired by the phyllotaxis arrangement observed in plants, while the bionic morphology involves the incorporation of convex unit morphology found in desert organisms. Employing a comprehensive approach encompassing erosion testing and numerical analysis, we established two comparative test groups that differed in terms of arrangement and distribution density. This comprehensive analysis sheds light on the erosion resistance mechanism inherent in the combined bionic model. The findings of this study hold significant theoretical implications for the advancement of bionic anti-erosion technology and its practical applications in engineering.</description><issn>0742-4787</issn><issn>1528-8897</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNotj71LAzEchoMoeFYHd4esDlfzndxYy1ULBQe7h9_lEkm55krSIv3vPWmnd3l4eR6EnimZU0rlG50LopRR4gZVVDJTG9PoW1QRLVgttNH36KGUHSGUc8kr1C4SXqRjrNs8ljgmvDwPMfU5Ohjw9ykHcB6vkxvzYcxwjOkHb39H_D6h0eF28HufjuUR3QUYin-67gxtV-12-Vlvvj7Wy8WmBilFDc4BZQxk1wstFRASXGe06EXHBG9Ew1QgqgmN16H3rqfKQeAuGEIVAwA-Q6-XWzfJluyDPeS4h3y2lNj_fEvtNX9iXy4slL23u_GU02RmKSOaScb_AFJZVhs</recordid><startdate>20250301</startdate><enddate>20250301</enddate><creator>Yu, Haiyue</creator><creator>Sun, Kaixin</creator><creator>Shao, Leitong</creator><creator>Zhang, Junqiu</creator><creator>Han, Zhiwu</creator><general>ASME</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20250301</creationdate><title>An Anti-Erosion Cylindrical Surface Incorporating Two Bionic Elements</title><author>Yu, Haiyue ; Sun, Kaixin ; Shao, Leitong ; Zhang, Junqiu ; Han, Zhiwu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a554-acca122a5bd4756a00fcb874d4b24394926f069f9e7fdecd16caf3cf80162aaa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Haiyue</creatorcontrib><creatorcontrib>Sun, Kaixin</creatorcontrib><creatorcontrib>Shao, Leitong</creatorcontrib><creatorcontrib>Zhang, Junqiu</creatorcontrib><creatorcontrib>Han, Zhiwu</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of tribology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Haiyue</au><au>Sun, Kaixin</au><au>Shao, Leitong</au><au>Zhang, Junqiu</au><au>Han, Zhiwu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Anti-Erosion Cylindrical Surface Incorporating Two Bionic Elements</atitle><jtitle>Journal of tribology</jtitle><stitle>J. Tribol</stitle><date>2025-03-01</date><risdate>2025</risdate><volume>147</volume><issue>3</issue><issn>0742-4787</issn><eissn>1528-8897</eissn><abstract>Erosion is an inevitable and persistent form of wear, which predominantly occurs on curved surfaces within the realm of fluid machinery. To address this issue, we have developed a novel model incorporating two bionic elements, namely bionic arrangement and bionic morphology, and applied it to explore the erosion resistance of cylindrical surfaces. Specifically, the bionic arrangement is inspired by the phyllotaxis arrangement observed in plants, while the bionic morphology involves the incorporation of convex unit morphology found in desert organisms. Employing a comprehensive approach encompassing erosion testing and numerical analysis, we established two comparative test groups that differed in terms of arrangement and distribution density. This comprehensive analysis sheds light on the erosion resistance mechanism inherent in the combined bionic model. The findings of this study hold significant theoretical implications for the advancement of bionic anti-erosion technology and its practical applications in engineering.</abstract><pub>ASME</pub><doi>10.1115/1.4066864</doi></addata></record>
fulltext fulltext
identifier ISSN: 0742-4787
ispartof Journal of tribology, 2025-03, Vol.147 (3)
issn 0742-4787
1528-8897
language eng
recordid cdi_crossref_primary_10_1115_1_4066864
source ASME Transactions Journals (Current)
title An Anti-Erosion Cylindrical Surface Incorporating Two Bionic Elements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T14%3A10%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-asme_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Anti-Erosion%20Cylindrical%20Surface%20Incorporating%20Two%20Bionic%20Elements&rft.jtitle=Journal%20of%20tribology&rft.au=Yu,%20Haiyue&rft.date=2025-03-01&rft.volume=147&rft.issue=3&rft.issn=0742-4787&rft.eissn=1528-8897&rft_id=info:doi/10.1115/1.4066864&rft_dat=%3Casme_cross%3E1207252%3C/asme_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true