A Computational Study of Temperature-Driven Low Engine Order Forced Response in High Pressure Turbines

This paper reports the results of computational studies of the effect of combustor exit temperature distortions on low engine order (LEO) forced response of a high pressure turbine (HPT). Forced response of this kind occurs at frequencies below the stator vane passing frequency (SVPF) and can be a m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of engineering for gas turbines and power 2025-05, Vol.147 (5)
Hauptverfasser: Trafford, Alexander, Stapelfeldt, Sina
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Journal of engineering for gas turbines and power
container_volume 147
creator Trafford, Alexander
Stapelfeldt, Sina
description This paper reports the results of computational studies of the effect of combustor exit temperature distortions on low engine order (LEO) forced response of a high pressure turbine (HPT). Forced response of this kind occurs at frequencies below the stator vane passing frequency (SVPF) and can be a major cause of high cycle fatigue in turbines due to its tendency to excite fundamental modes of vibration. This paper investigates the extent through which temperature distortions act as a forcing stimulus in HPT rotor rows, through measuring unsteady pressure and modal force magnitude recorded from full annulus unsteady simulations of the MT1 stage: a low temperature, unshrouded, HPT rig. Rotor relative incidence angle variations are shown to be the key mechanism through which temperature acts as a forcer in HPT rotor rows while temperature-driven forced response is shown to be dependent on the magnitude of the modal content of the upstream temperature waves. These findings are used to build a reduced domain tool for blocked burner forced response prediction, which is shown to be accurate to a root mean squared (RMS) error of 2.66%, far beyond the current accepted standard for forcing prediction of this kind.
doi_str_mv 10.1115/1.4066825
format Article
fullrecord <record><control><sourceid>asme_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1115_1_4066825</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1207174</sourcerecordid><originalsourceid>FETCH-LOGICAL-a555-e0d765bbbf3da60f5afc57d58898a2a2b5f442a756560ae6fcf87d195ed201263</originalsourceid><addsrcrecordid>eNotkDFPwzAUhC0EEqUwsDN4ZUixnTw7GavSUqRIRZA9cuLnkqqJIzsB9d8T1E63fHfSfYQ8crbgnMMLXyRMylTAFZlxEGmUZjy7JjOmEhElKoNbchfCgTEex4maEbukK9f246CHxnX6SL-G0Zyos7TAtkevh9Fj9OqbH-xo7n7puts3HdKdN-jpxvkaDf3E0LsuIG06um323_TDYwhTkRajryY83JMbq48BHy45J8VmXay2Ub57e18t80gDQITMKAlVVdnYaMksaFuDMpCmWaqFFhXYJBFagQTJNEpb21QZngEawbiQ8Zw8n2dr70LwaMveN632p5Kz8t9PycuLn4l9OrM6tFge3Oin-6HkgimukvgPA-NhqQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Computational Study of Temperature-Driven Low Engine Order Forced Response in High Pressure Turbines</title><source>ASME Transactions Journals (Current)</source><creator>Trafford, Alexander ; Stapelfeldt, Sina</creator><creatorcontrib>Trafford, Alexander ; Stapelfeldt, Sina</creatorcontrib><description>This paper reports the results of computational studies of the effect of combustor exit temperature distortions on low engine order (LEO) forced response of a high pressure turbine (HPT). Forced response of this kind occurs at frequencies below the stator vane passing frequency (SVPF) and can be a major cause of high cycle fatigue in turbines due to its tendency to excite fundamental modes of vibration. This paper investigates the extent through which temperature distortions act as a forcing stimulus in HPT rotor rows, through measuring unsteady pressure and modal force magnitude recorded from full annulus unsteady simulations of the MT1 stage: a low temperature, unshrouded, HPT rig. Rotor relative incidence angle variations are shown to be the key mechanism through which temperature acts as a forcer in HPT rotor rows while temperature-driven forced response is shown to be dependent on the magnitude of the modal content of the upstream temperature waves. These findings are used to build a reduced domain tool for blocked burner forced response prediction, which is shown to be accurate to a root mean squared (RMS) error of 2.66%, far beyond the current accepted standard for forcing prediction of this kind.</description><identifier>ISSN: 0742-4795</identifier><identifier>EISSN: 1528-8919</identifier><identifier>DOI: 10.1115/1.4066825</identifier><language>eng</language><publisher>ASME</publisher><ispartof>Journal of engineering for gas turbines and power, 2025-05, Vol.147 (5)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a555-e0d765bbbf3da60f5afc57d58898a2a2b5f442a756560ae6fcf87d195ed201263</cites><orcidid>0000-0002-7961-3584</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904,38499</link.rule.ids></links><search><creatorcontrib>Trafford, Alexander</creatorcontrib><creatorcontrib>Stapelfeldt, Sina</creatorcontrib><title>A Computational Study of Temperature-Driven Low Engine Order Forced Response in High Pressure Turbines</title><title>Journal of engineering for gas turbines and power</title><addtitle>J. Eng. Gas Turbines Power</addtitle><description>This paper reports the results of computational studies of the effect of combustor exit temperature distortions on low engine order (LEO) forced response of a high pressure turbine (HPT). Forced response of this kind occurs at frequencies below the stator vane passing frequency (SVPF) and can be a major cause of high cycle fatigue in turbines due to its tendency to excite fundamental modes of vibration. This paper investigates the extent through which temperature distortions act as a forcing stimulus in HPT rotor rows, through measuring unsteady pressure and modal force magnitude recorded from full annulus unsteady simulations of the MT1 stage: a low temperature, unshrouded, HPT rig. Rotor relative incidence angle variations are shown to be the key mechanism through which temperature acts as a forcer in HPT rotor rows while temperature-driven forced response is shown to be dependent on the magnitude of the modal content of the upstream temperature waves. These findings are used to build a reduced domain tool for blocked burner forced response prediction, which is shown to be accurate to a root mean squared (RMS) error of 2.66%, far beyond the current accepted standard for forcing prediction of this kind.</description><issn>0742-4795</issn><issn>1528-8919</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNotkDFPwzAUhC0EEqUwsDN4ZUixnTw7GavSUqRIRZA9cuLnkqqJIzsB9d8T1E63fHfSfYQ8crbgnMMLXyRMylTAFZlxEGmUZjy7JjOmEhElKoNbchfCgTEex4maEbukK9f246CHxnX6SL-G0Zyos7TAtkevh9Fj9OqbH-xo7n7puts3HdKdN-jpxvkaDf3E0LsuIG06um323_TDYwhTkRajryY83JMbq48BHy45J8VmXay2Ub57e18t80gDQITMKAlVVdnYaMksaFuDMpCmWaqFFhXYJBFagQTJNEpb21QZngEawbiQ8Zw8n2dr70LwaMveN632p5Kz8t9PycuLn4l9OrM6tFge3Oin-6HkgimukvgPA-NhqQ</recordid><startdate>20250501</startdate><enddate>20250501</enddate><creator>Trafford, Alexander</creator><creator>Stapelfeldt, Sina</creator><general>ASME</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7961-3584</orcidid></search><sort><creationdate>20250501</creationdate><title>A Computational Study of Temperature-Driven Low Engine Order Forced Response in High Pressure Turbines</title><author>Trafford, Alexander ; Stapelfeldt, Sina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a555-e0d765bbbf3da60f5afc57d58898a2a2b5f442a756560ae6fcf87d195ed201263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trafford, Alexander</creatorcontrib><creatorcontrib>Stapelfeldt, Sina</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of engineering for gas turbines and power</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trafford, Alexander</au><au>Stapelfeldt, Sina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Computational Study of Temperature-Driven Low Engine Order Forced Response in High Pressure Turbines</atitle><jtitle>Journal of engineering for gas turbines and power</jtitle><stitle>J. Eng. Gas Turbines Power</stitle><date>2025-05-01</date><risdate>2025</risdate><volume>147</volume><issue>5</issue><issn>0742-4795</issn><eissn>1528-8919</eissn><abstract>This paper reports the results of computational studies of the effect of combustor exit temperature distortions on low engine order (LEO) forced response of a high pressure turbine (HPT). Forced response of this kind occurs at frequencies below the stator vane passing frequency (SVPF) and can be a major cause of high cycle fatigue in turbines due to its tendency to excite fundamental modes of vibration. This paper investigates the extent through which temperature distortions act as a forcing stimulus in HPT rotor rows, through measuring unsteady pressure and modal force magnitude recorded from full annulus unsteady simulations of the MT1 stage: a low temperature, unshrouded, HPT rig. Rotor relative incidence angle variations are shown to be the key mechanism through which temperature acts as a forcer in HPT rotor rows while temperature-driven forced response is shown to be dependent on the magnitude of the modal content of the upstream temperature waves. These findings are used to build a reduced domain tool for blocked burner forced response prediction, which is shown to be accurate to a root mean squared (RMS) error of 2.66%, far beyond the current accepted standard for forcing prediction of this kind.</abstract><pub>ASME</pub><doi>10.1115/1.4066825</doi><orcidid>https://orcid.org/0000-0002-7961-3584</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0742-4795
ispartof Journal of engineering for gas turbines and power, 2025-05, Vol.147 (5)
issn 0742-4795
1528-8919
language eng
recordid cdi_crossref_primary_10_1115_1_4066825
source ASME Transactions Journals (Current)
title A Computational Study of Temperature-Driven Low Engine Order Forced Response in High Pressure Turbines
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T12%3A45%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-asme_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Computational%20Study%20of%20Temperature-Driven%20Low%20Engine%20Order%20Forced%20Response%20in%20High%20Pressure%20Turbines&rft.jtitle=Journal%20of%20engineering%20for%20gas%20turbines%20and%20power&rft.au=Trafford,%20Alexander&rft.date=2025-05-01&rft.volume=147&rft.issue=5&rft.issn=0742-4795&rft.eissn=1528-8919&rft_id=info:doi/10.1115/1.4066825&rft_dat=%3Casme_cross%3E1207174%3C/asme_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true