Modeling and Experimental Data Analysis of Oscillating Heat Pipes: A Review
An oscillating heat pipe (OHP) is a special kind of heat pipe in which the working fluid experiences an oscillatory motion without the need for wick structures or external electrical power input beyond a driving temperature difference. In contrast to traditional heat pipes and thermosyphons, which r...
Gespeichert in:
Veröffentlicht in: | ASME journal of heat and mass transfer 2024-11, Vol.146 (11) |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | |
container_title | ASME journal of heat and mass transfer |
container_volume | 146 |
creator | Mohammadian, Shahabeddin K. H. Mohammed, Ramy Nunez, Roberto Rupam, Tahmid Spitzenberger, Jeremy Hoelle, James Ibrahim, Omar T. Feng, Frank Z. Miller, Alex Taft, Brenton Allison, Jonathan Abu-Heiba, Ahmed Mahderekal, Isaac Ma, Hongbin |
description | An oscillating heat pipe (OHP) is a special kind of heat pipe in which the working fluid experiences an oscillatory motion without the need for wick structures or external electrical power input beyond a driving temperature difference. In contrast to traditional heat pipes and thermosyphons, which rely on capillarity or gravitation, OHPs operate based on pressure difference which causes oscillating motion. This oscillation is very important since it is the main reason behind the higher heat flux acquisition capability that OHPs exhibit with respect to other types of heat pipes. However, this oscillation is nondeterministic and thus difficult to model, which hinders the ability to control and design OHPs. Since the invention of OHPs in the early 1990s, many researchers have tried to analyze and predict the oscillating motions in OHPs under different working conditions to enhance their performance and reliability to make them suitable for industrial applications. This review presents the evolution of OHP modeling, as well as mathematical approaches to the analysis of experimental data obtained from OHPs. Furthermore, the machine learning (ML) models applied on OHPs are reviewed. |
doi_str_mv | 10.1115/1.4065718 |
format | Article |
fullrecord | <record><control><sourceid>asme_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1115_1_4065718</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1200894</sourcerecordid><originalsourceid>FETCH-LOGICAL-a140t-6d454394202e43a6ee7254b53227e94ef245b552e4b3ec778f3c98bddc14272d3</originalsourceid><addsrcrecordid>eNo9kM1Lw0AUxBdRsNQevHvYq4fUffuRTbyF2lqxUhE9L5vsi2zZJiUbP_rfm9LiaQbmx_DeEHINbAoA6g6mkqVKQ3ZGRjwTPMlkmp__e8UuySTGDWOM65Rp0CPy_NI6DL75pLZxdP67w85vseltoA-2t7RobNhHH2lb03WsfAi2P9BLtD199TuM97Sgb_jt8eeKXNQ2RJycdEw-FvP32TJZrR-fZsUqsSBZn6ROKilyyRlHKWyKqLmSpRKca8wl1lyqUqkhLAVWWme1qPKsdK4CyTV3Ykxuj71V18bYYW12w9G22xtg5jCEAXMaYmBvjqyNWzSb9qsbHooGOGNZLsUfu0dXPg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Modeling and Experimental Data Analysis of Oscillating Heat Pipes: A Review</title><source>ASME_美国机械工程师学会现刊</source><creator>Mohammadian, Shahabeddin K. ; H. Mohammed, Ramy ; Nunez, Roberto ; Rupam, Tahmid ; Spitzenberger, Jeremy ; Hoelle, James ; Ibrahim, Omar T. ; Feng, Frank Z. ; Miller, Alex ; Taft, Brenton ; Allison, Jonathan ; Abu-Heiba, Ahmed ; Mahderekal, Isaac ; Ma, Hongbin</creator><creatorcontrib>Mohammadian, Shahabeddin K. ; H. Mohammed, Ramy ; Nunez, Roberto ; Rupam, Tahmid ; Spitzenberger, Jeremy ; Hoelle, James ; Ibrahim, Omar T. ; Feng, Frank Z. ; Miller, Alex ; Taft, Brenton ; Allison, Jonathan ; Abu-Heiba, Ahmed ; Mahderekal, Isaac ; Ma, Hongbin</creatorcontrib><description>An oscillating heat pipe (OHP) is a special kind of heat pipe in which the working fluid experiences an oscillatory motion without the need for wick structures or external electrical power input beyond a driving temperature difference. In contrast to traditional heat pipes and thermosyphons, which rely on capillarity or gravitation, OHPs operate based on pressure difference which causes oscillating motion. This oscillation is very important since it is the main reason behind the higher heat flux acquisition capability that OHPs exhibit with respect to other types of heat pipes. However, this oscillation is nondeterministic and thus difficult to model, which hinders the ability to control and design OHPs. Since the invention of OHPs in the early 1990s, many researchers have tried to analyze and predict the oscillating motions in OHPs under different working conditions to enhance their performance and reliability to make them suitable for industrial applications. This review presents the evolution of OHP modeling, as well as mathematical approaches to the analysis of experimental data obtained from OHPs. Furthermore, the machine learning (ML) models applied on OHPs are reviewed.</description><identifier>ISSN: 2832-8450</identifier><identifier>EISSN: 2832-8469</identifier><identifier>DOI: 10.1115/1.4065718</identifier><language>eng</language><publisher>ASME</publisher><ispartof>ASME journal of heat and mass transfer, 2024-11, Vol.146 (11)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a140t-6d454394202e43a6ee7254b53227e94ef245b552e4b3ec778f3c98bddc14272d3</cites><orcidid>0000-0001-5335-6180 ; 0000-0003-0930-517X ; 0000-0001-6451-8739 ; 0000-0002-0085-0692</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,38520</link.rule.ids></links><search><creatorcontrib>Mohammadian, Shahabeddin K.</creatorcontrib><creatorcontrib>H. Mohammed, Ramy</creatorcontrib><creatorcontrib>Nunez, Roberto</creatorcontrib><creatorcontrib>Rupam, Tahmid</creatorcontrib><creatorcontrib>Spitzenberger, Jeremy</creatorcontrib><creatorcontrib>Hoelle, James</creatorcontrib><creatorcontrib>Ibrahim, Omar T.</creatorcontrib><creatorcontrib>Feng, Frank Z.</creatorcontrib><creatorcontrib>Miller, Alex</creatorcontrib><creatorcontrib>Taft, Brenton</creatorcontrib><creatorcontrib>Allison, Jonathan</creatorcontrib><creatorcontrib>Abu-Heiba, Ahmed</creatorcontrib><creatorcontrib>Mahderekal, Isaac</creatorcontrib><creatorcontrib>Ma, Hongbin</creatorcontrib><title>Modeling and Experimental Data Analysis of Oscillating Heat Pipes: A Review</title><title>ASME journal of heat and mass transfer</title><addtitle>J. Heat Mass Transfer</addtitle><description>An oscillating heat pipe (OHP) is a special kind of heat pipe in which the working fluid experiences an oscillatory motion without the need for wick structures or external electrical power input beyond a driving temperature difference. In contrast to traditional heat pipes and thermosyphons, which rely on capillarity or gravitation, OHPs operate based on pressure difference which causes oscillating motion. This oscillation is very important since it is the main reason behind the higher heat flux acquisition capability that OHPs exhibit with respect to other types of heat pipes. However, this oscillation is nondeterministic and thus difficult to model, which hinders the ability to control and design OHPs. Since the invention of OHPs in the early 1990s, many researchers have tried to analyze and predict the oscillating motions in OHPs under different working conditions to enhance their performance and reliability to make them suitable for industrial applications. This review presents the evolution of OHP modeling, as well as mathematical approaches to the analysis of experimental data obtained from OHPs. Furthermore, the machine learning (ML) models applied on OHPs are reviewed.</description><issn>2832-8450</issn><issn>2832-8469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kM1Lw0AUxBdRsNQevHvYq4fUffuRTbyF2lqxUhE9L5vsi2zZJiUbP_rfm9LiaQbmx_DeEHINbAoA6g6mkqVKQ3ZGRjwTPMlkmp__e8UuySTGDWOM65Rp0CPy_NI6DL75pLZxdP67w85vseltoA-2t7RobNhHH2lb03WsfAi2P9BLtD199TuM97Sgb_jt8eeKXNQ2RJycdEw-FvP32TJZrR-fZsUqsSBZn6ROKilyyRlHKWyKqLmSpRKca8wl1lyqUqkhLAVWWme1qPKsdK4CyTV3Ykxuj71V18bYYW12w9G22xtg5jCEAXMaYmBvjqyNWzSb9qsbHooGOGNZLsUfu0dXPg</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Mohammadian, Shahabeddin K.</creator><creator>H. Mohammed, Ramy</creator><creator>Nunez, Roberto</creator><creator>Rupam, Tahmid</creator><creator>Spitzenberger, Jeremy</creator><creator>Hoelle, James</creator><creator>Ibrahim, Omar T.</creator><creator>Feng, Frank Z.</creator><creator>Miller, Alex</creator><creator>Taft, Brenton</creator><creator>Allison, Jonathan</creator><creator>Abu-Heiba, Ahmed</creator><creator>Mahderekal, Isaac</creator><creator>Ma, Hongbin</creator><general>ASME</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5335-6180</orcidid><orcidid>https://orcid.org/0000-0003-0930-517X</orcidid><orcidid>https://orcid.org/0000-0001-6451-8739</orcidid><orcidid>https://orcid.org/0000-0002-0085-0692</orcidid></search><sort><creationdate>20241101</creationdate><title>Modeling and Experimental Data Analysis of Oscillating Heat Pipes: A Review</title><author>Mohammadian, Shahabeddin K. ; H. Mohammed, Ramy ; Nunez, Roberto ; Rupam, Tahmid ; Spitzenberger, Jeremy ; Hoelle, James ; Ibrahim, Omar T. ; Feng, Frank Z. ; Miller, Alex ; Taft, Brenton ; Allison, Jonathan ; Abu-Heiba, Ahmed ; Mahderekal, Isaac ; Ma, Hongbin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a140t-6d454394202e43a6ee7254b53227e94ef245b552e4b3ec778f3c98bddc14272d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohammadian, Shahabeddin K.</creatorcontrib><creatorcontrib>H. Mohammed, Ramy</creatorcontrib><creatorcontrib>Nunez, Roberto</creatorcontrib><creatorcontrib>Rupam, Tahmid</creatorcontrib><creatorcontrib>Spitzenberger, Jeremy</creatorcontrib><creatorcontrib>Hoelle, James</creatorcontrib><creatorcontrib>Ibrahim, Omar T.</creatorcontrib><creatorcontrib>Feng, Frank Z.</creatorcontrib><creatorcontrib>Miller, Alex</creatorcontrib><creatorcontrib>Taft, Brenton</creatorcontrib><creatorcontrib>Allison, Jonathan</creatorcontrib><creatorcontrib>Abu-Heiba, Ahmed</creatorcontrib><creatorcontrib>Mahderekal, Isaac</creatorcontrib><creatorcontrib>Ma, Hongbin</creatorcontrib><collection>CrossRef</collection><jtitle>ASME journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohammadian, Shahabeddin K.</au><au>H. Mohammed, Ramy</au><au>Nunez, Roberto</au><au>Rupam, Tahmid</au><au>Spitzenberger, Jeremy</au><au>Hoelle, James</au><au>Ibrahim, Omar T.</au><au>Feng, Frank Z.</au><au>Miller, Alex</au><au>Taft, Brenton</au><au>Allison, Jonathan</au><au>Abu-Heiba, Ahmed</au><au>Mahderekal, Isaac</au><au>Ma, Hongbin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling and Experimental Data Analysis of Oscillating Heat Pipes: A Review</atitle><jtitle>ASME journal of heat and mass transfer</jtitle><stitle>J. Heat Mass Transfer</stitle><date>2024-11-01</date><risdate>2024</risdate><volume>146</volume><issue>11</issue><issn>2832-8450</issn><eissn>2832-8469</eissn><abstract>An oscillating heat pipe (OHP) is a special kind of heat pipe in which the working fluid experiences an oscillatory motion without the need for wick structures or external electrical power input beyond a driving temperature difference. In contrast to traditional heat pipes and thermosyphons, which rely on capillarity or gravitation, OHPs operate based on pressure difference which causes oscillating motion. This oscillation is very important since it is the main reason behind the higher heat flux acquisition capability that OHPs exhibit with respect to other types of heat pipes. However, this oscillation is nondeterministic and thus difficult to model, which hinders the ability to control and design OHPs. Since the invention of OHPs in the early 1990s, many researchers have tried to analyze and predict the oscillating motions in OHPs under different working conditions to enhance their performance and reliability to make them suitable for industrial applications. This review presents the evolution of OHP modeling, as well as mathematical approaches to the analysis of experimental data obtained from OHPs. Furthermore, the machine learning (ML) models applied on OHPs are reviewed.</abstract><pub>ASME</pub><doi>10.1115/1.4065718</doi><orcidid>https://orcid.org/0000-0001-5335-6180</orcidid><orcidid>https://orcid.org/0000-0003-0930-517X</orcidid><orcidid>https://orcid.org/0000-0001-6451-8739</orcidid><orcidid>https://orcid.org/0000-0002-0085-0692</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2832-8450 |
ispartof | ASME journal of heat and mass transfer, 2024-11, Vol.146 (11) |
issn | 2832-8450 2832-8469 |
language | eng |
recordid | cdi_crossref_primary_10_1115_1_4065718 |
source | ASME_美国机械工程师学会现刊 |
title | Modeling and Experimental Data Analysis of Oscillating Heat Pipes: A Review |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T15%3A27%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-asme_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20and%20Experimental%20Data%20Analysis%20of%20Oscillating%20Heat%20Pipes:%20A%20Review&rft.jtitle=ASME%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Mohammadian,%20Shahabeddin%20K.&rft.date=2024-11-01&rft.volume=146&rft.issue=11&rft.issn=2832-8450&rft.eissn=2832-8469&rft_id=info:doi/10.1115/1.4065718&rft_dat=%3Casme_cross%3E1200894%3C/asme_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |