Modeling and Experimental Data Analysis of Oscillating Heat Pipes: A Review

An oscillating heat pipe (OHP) is a special kind of heat pipe in which the working fluid experiences an oscillatory motion without the need for wick structures or external electrical power input beyond a driving temperature difference. In contrast to traditional heat pipes and thermosyphons, which r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ASME journal of heat and mass transfer 2024-11, Vol.146 (11)
Hauptverfasser: Mohammadian, Shahabeddin K., H. Mohammed, Ramy, Nunez, Roberto, Rupam, Tahmid, Spitzenberger, Jeremy, Hoelle, James, Ibrahim, Omar T., Feng, Frank Z., Miller, Alex, Taft, Brenton, Allison, Jonathan, Abu-Heiba, Ahmed, Mahderekal, Isaac, Ma, Hongbin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page
container_title ASME journal of heat and mass transfer
container_volume 146
creator Mohammadian, Shahabeddin K.
H. Mohammed, Ramy
Nunez, Roberto
Rupam, Tahmid
Spitzenberger, Jeremy
Hoelle, James
Ibrahim, Omar T.
Feng, Frank Z.
Miller, Alex
Taft, Brenton
Allison, Jonathan
Abu-Heiba, Ahmed
Mahderekal, Isaac
Ma, Hongbin
description An oscillating heat pipe (OHP) is a special kind of heat pipe in which the working fluid experiences an oscillatory motion without the need for wick structures or external electrical power input beyond a driving temperature difference. In contrast to traditional heat pipes and thermosyphons, which rely on capillarity or gravitation, OHPs operate based on pressure difference which causes oscillating motion. This oscillation is very important since it is the main reason behind the higher heat flux acquisition capability that OHPs exhibit with respect to other types of heat pipes. However, this oscillation is nondeterministic and thus difficult to model, which hinders the ability to control and design OHPs. Since the invention of OHPs in the early 1990s, many researchers have tried to analyze and predict the oscillating motions in OHPs under different working conditions to enhance their performance and reliability to make them suitable for industrial applications. This review presents the evolution of OHP modeling, as well as mathematical approaches to the analysis of experimental data obtained from OHPs. Furthermore, the machine learning (ML) models applied on OHPs are reviewed.
doi_str_mv 10.1115/1.4065718
format Article
fullrecord <record><control><sourceid>asme_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1115_1_4065718</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1200894</sourcerecordid><originalsourceid>FETCH-LOGICAL-a140t-6d454394202e43a6ee7254b53227e94ef245b552e4b3ec778f3c98bddc14272d3</originalsourceid><addsrcrecordid>eNo9kM1Lw0AUxBdRsNQevHvYq4fUffuRTbyF2lqxUhE9L5vsi2zZJiUbP_rfm9LiaQbmx_DeEHINbAoA6g6mkqVKQ3ZGRjwTPMlkmp__e8UuySTGDWOM65Rp0CPy_NI6DL75pLZxdP67w85vseltoA-2t7RobNhHH2lb03WsfAi2P9BLtD199TuM97Sgb_jt8eeKXNQ2RJycdEw-FvP32TJZrR-fZsUqsSBZn6ROKilyyRlHKWyKqLmSpRKca8wl1lyqUqkhLAVWWme1qPKsdK4CyTV3Ykxuj71V18bYYW12w9G22xtg5jCEAXMaYmBvjqyNWzSb9qsbHooGOGNZLsUfu0dXPg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Modeling and Experimental Data Analysis of Oscillating Heat Pipes: A Review</title><source>ASME_美国机械工程师学会现刊</source><creator>Mohammadian, Shahabeddin K. ; H. Mohammed, Ramy ; Nunez, Roberto ; Rupam, Tahmid ; Spitzenberger, Jeremy ; Hoelle, James ; Ibrahim, Omar T. ; Feng, Frank Z. ; Miller, Alex ; Taft, Brenton ; Allison, Jonathan ; Abu-Heiba, Ahmed ; Mahderekal, Isaac ; Ma, Hongbin</creator><creatorcontrib>Mohammadian, Shahabeddin K. ; H. Mohammed, Ramy ; Nunez, Roberto ; Rupam, Tahmid ; Spitzenberger, Jeremy ; Hoelle, James ; Ibrahim, Omar T. ; Feng, Frank Z. ; Miller, Alex ; Taft, Brenton ; Allison, Jonathan ; Abu-Heiba, Ahmed ; Mahderekal, Isaac ; Ma, Hongbin</creatorcontrib><description>An oscillating heat pipe (OHP) is a special kind of heat pipe in which the working fluid experiences an oscillatory motion without the need for wick structures or external electrical power input beyond a driving temperature difference. In contrast to traditional heat pipes and thermosyphons, which rely on capillarity or gravitation, OHPs operate based on pressure difference which causes oscillating motion. This oscillation is very important since it is the main reason behind the higher heat flux acquisition capability that OHPs exhibit with respect to other types of heat pipes. However, this oscillation is nondeterministic and thus difficult to model, which hinders the ability to control and design OHPs. Since the invention of OHPs in the early 1990s, many researchers have tried to analyze and predict the oscillating motions in OHPs under different working conditions to enhance their performance and reliability to make them suitable for industrial applications. This review presents the evolution of OHP modeling, as well as mathematical approaches to the analysis of experimental data obtained from OHPs. Furthermore, the machine learning (ML) models applied on OHPs are reviewed.</description><identifier>ISSN: 2832-8450</identifier><identifier>EISSN: 2832-8469</identifier><identifier>DOI: 10.1115/1.4065718</identifier><language>eng</language><publisher>ASME</publisher><ispartof>ASME journal of heat and mass transfer, 2024-11, Vol.146 (11)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a140t-6d454394202e43a6ee7254b53227e94ef245b552e4b3ec778f3c98bddc14272d3</cites><orcidid>0000-0001-5335-6180 ; 0000-0003-0930-517X ; 0000-0001-6451-8739 ; 0000-0002-0085-0692</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,38520</link.rule.ids></links><search><creatorcontrib>Mohammadian, Shahabeddin K.</creatorcontrib><creatorcontrib>H. Mohammed, Ramy</creatorcontrib><creatorcontrib>Nunez, Roberto</creatorcontrib><creatorcontrib>Rupam, Tahmid</creatorcontrib><creatorcontrib>Spitzenberger, Jeremy</creatorcontrib><creatorcontrib>Hoelle, James</creatorcontrib><creatorcontrib>Ibrahim, Omar T.</creatorcontrib><creatorcontrib>Feng, Frank Z.</creatorcontrib><creatorcontrib>Miller, Alex</creatorcontrib><creatorcontrib>Taft, Brenton</creatorcontrib><creatorcontrib>Allison, Jonathan</creatorcontrib><creatorcontrib>Abu-Heiba, Ahmed</creatorcontrib><creatorcontrib>Mahderekal, Isaac</creatorcontrib><creatorcontrib>Ma, Hongbin</creatorcontrib><title>Modeling and Experimental Data Analysis of Oscillating Heat Pipes: A Review</title><title>ASME journal of heat and mass transfer</title><addtitle>J. Heat Mass Transfer</addtitle><description>An oscillating heat pipe (OHP) is a special kind of heat pipe in which the working fluid experiences an oscillatory motion without the need for wick structures or external electrical power input beyond a driving temperature difference. In contrast to traditional heat pipes and thermosyphons, which rely on capillarity or gravitation, OHPs operate based on pressure difference which causes oscillating motion. This oscillation is very important since it is the main reason behind the higher heat flux acquisition capability that OHPs exhibit with respect to other types of heat pipes. However, this oscillation is nondeterministic and thus difficult to model, which hinders the ability to control and design OHPs. Since the invention of OHPs in the early 1990s, many researchers have tried to analyze and predict the oscillating motions in OHPs under different working conditions to enhance their performance and reliability to make them suitable for industrial applications. This review presents the evolution of OHP modeling, as well as mathematical approaches to the analysis of experimental data obtained from OHPs. Furthermore, the machine learning (ML) models applied on OHPs are reviewed.</description><issn>2832-8450</issn><issn>2832-8469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kM1Lw0AUxBdRsNQevHvYq4fUffuRTbyF2lqxUhE9L5vsi2zZJiUbP_rfm9LiaQbmx_DeEHINbAoA6g6mkqVKQ3ZGRjwTPMlkmp__e8UuySTGDWOM65Rp0CPy_NI6DL75pLZxdP67w85vseltoA-2t7RobNhHH2lb03WsfAi2P9BLtD199TuM97Sgb_jt8eeKXNQ2RJycdEw-FvP32TJZrR-fZsUqsSBZn6ROKilyyRlHKWyKqLmSpRKca8wl1lyqUqkhLAVWWme1qPKsdK4CyTV3Ykxuj71V18bYYW12w9G22xtg5jCEAXMaYmBvjqyNWzSb9qsbHooGOGNZLsUfu0dXPg</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Mohammadian, Shahabeddin K.</creator><creator>H. Mohammed, Ramy</creator><creator>Nunez, Roberto</creator><creator>Rupam, Tahmid</creator><creator>Spitzenberger, Jeremy</creator><creator>Hoelle, James</creator><creator>Ibrahim, Omar T.</creator><creator>Feng, Frank Z.</creator><creator>Miller, Alex</creator><creator>Taft, Brenton</creator><creator>Allison, Jonathan</creator><creator>Abu-Heiba, Ahmed</creator><creator>Mahderekal, Isaac</creator><creator>Ma, Hongbin</creator><general>ASME</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5335-6180</orcidid><orcidid>https://orcid.org/0000-0003-0930-517X</orcidid><orcidid>https://orcid.org/0000-0001-6451-8739</orcidid><orcidid>https://orcid.org/0000-0002-0085-0692</orcidid></search><sort><creationdate>20241101</creationdate><title>Modeling and Experimental Data Analysis of Oscillating Heat Pipes: A Review</title><author>Mohammadian, Shahabeddin K. ; H. Mohammed, Ramy ; Nunez, Roberto ; Rupam, Tahmid ; Spitzenberger, Jeremy ; Hoelle, James ; Ibrahim, Omar T. ; Feng, Frank Z. ; Miller, Alex ; Taft, Brenton ; Allison, Jonathan ; Abu-Heiba, Ahmed ; Mahderekal, Isaac ; Ma, Hongbin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a140t-6d454394202e43a6ee7254b53227e94ef245b552e4b3ec778f3c98bddc14272d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohammadian, Shahabeddin K.</creatorcontrib><creatorcontrib>H. Mohammed, Ramy</creatorcontrib><creatorcontrib>Nunez, Roberto</creatorcontrib><creatorcontrib>Rupam, Tahmid</creatorcontrib><creatorcontrib>Spitzenberger, Jeremy</creatorcontrib><creatorcontrib>Hoelle, James</creatorcontrib><creatorcontrib>Ibrahim, Omar T.</creatorcontrib><creatorcontrib>Feng, Frank Z.</creatorcontrib><creatorcontrib>Miller, Alex</creatorcontrib><creatorcontrib>Taft, Brenton</creatorcontrib><creatorcontrib>Allison, Jonathan</creatorcontrib><creatorcontrib>Abu-Heiba, Ahmed</creatorcontrib><creatorcontrib>Mahderekal, Isaac</creatorcontrib><creatorcontrib>Ma, Hongbin</creatorcontrib><collection>CrossRef</collection><jtitle>ASME journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohammadian, Shahabeddin K.</au><au>H. Mohammed, Ramy</au><au>Nunez, Roberto</au><au>Rupam, Tahmid</au><au>Spitzenberger, Jeremy</au><au>Hoelle, James</au><au>Ibrahim, Omar T.</au><au>Feng, Frank Z.</au><au>Miller, Alex</au><au>Taft, Brenton</au><au>Allison, Jonathan</au><au>Abu-Heiba, Ahmed</au><au>Mahderekal, Isaac</au><au>Ma, Hongbin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling and Experimental Data Analysis of Oscillating Heat Pipes: A Review</atitle><jtitle>ASME journal of heat and mass transfer</jtitle><stitle>J. Heat Mass Transfer</stitle><date>2024-11-01</date><risdate>2024</risdate><volume>146</volume><issue>11</issue><issn>2832-8450</issn><eissn>2832-8469</eissn><abstract>An oscillating heat pipe (OHP) is a special kind of heat pipe in which the working fluid experiences an oscillatory motion without the need for wick structures or external electrical power input beyond a driving temperature difference. In contrast to traditional heat pipes and thermosyphons, which rely on capillarity or gravitation, OHPs operate based on pressure difference which causes oscillating motion. This oscillation is very important since it is the main reason behind the higher heat flux acquisition capability that OHPs exhibit with respect to other types of heat pipes. However, this oscillation is nondeterministic and thus difficult to model, which hinders the ability to control and design OHPs. Since the invention of OHPs in the early 1990s, many researchers have tried to analyze and predict the oscillating motions in OHPs under different working conditions to enhance their performance and reliability to make them suitable for industrial applications. This review presents the evolution of OHP modeling, as well as mathematical approaches to the analysis of experimental data obtained from OHPs. Furthermore, the machine learning (ML) models applied on OHPs are reviewed.</abstract><pub>ASME</pub><doi>10.1115/1.4065718</doi><orcidid>https://orcid.org/0000-0001-5335-6180</orcidid><orcidid>https://orcid.org/0000-0003-0930-517X</orcidid><orcidid>https://orcid.org/0000-0001-6451-8739</orcidid><orcidid>https://orcid.org/0000-0002-0085-0692</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2832-8450
ispartof ASME journal of heat and mass transfer, 2024-11, Vol.146 (11)
issn 2832-8450
2832-8469
language eng
recordid cdi_crossref_primary_10_1115_1_4065718
source ASME_美国机械工程师学会现刊
title Modeling and Experimental Data Analysis of Oscillating Heat Pipes: A Review
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T15%3A27%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-asme_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20and%20Experimental%20Data%20Analysis%20of%20Oscillating%20Heat%20Pipes:%20A%20Review&rft.jtitle=ASME%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Mohammadian,%20Shahabeddin%20K.&rft.date=2024-11-01&rft.volume=146&rft.issue=11&rft.issn=2832-8450&rft.eissn=2832-8469&rft_id=info:doi/10.1115/1.4065718&rft_dat=%3Casme_cross%3E1200894%3C/asme_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true