Adaptive Ensemble of Multi-Kernel Gaussian Process Regressions Based on Heuristic Model Screening for Nonparametric Modeling of Ship Maneuvering Motion
Gaussian process regression (GPR) is a commonly used approach for establishing the nonparametric models of ship maneuvering motion, and its performance depends on the selection of the kernel function. However, no single kernel function can be universally applied to all nonparametric models of ship m...
Gespeichert in:
Veröffentlicht in: | Journal of offshore mechanics and Arctic engineering 2025-02, Vol.147 (1) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Journal of offshore mechanics and Arctic engineering |
container_volume | 147 |
creator | Jiang, Lichao Shang, Xiaobing Qi, Xinyu Ouyang, Zilu Zhang, Zhi |
description | Gaussian process regression (GPR) is a commonly used approach for establishing the nonparametric models of ship maneuvering motion, and its performance depends on the selection of the kernel function. However, no single kernel function can be universally applied to all nonparametric models of ship maneuvering motion, which may compromise the robustness of GPR. To address this issue, an adaptive ensemble of multi-kernel GPRs based on heuristic model screening (AEGPR-HMS) is proposed in this paper. In the proposed method, four kernel functions are involved in constructing the ensemble model. The HMS method is introduced to determine the weights of individual-based GPR models, which can be adaptively assigned according to the baseline GPR model. To determine the hyper-parameters of these kernel functions, the genetic algorithm is also employed to compute the optimal values. The KVLCC2 tanker provided by the SIMMAN 2008 workshop is used to validate the performance of the proposed method. The results demonstrate that the AEGPR-HMS is an efficient and robust method for nonparametric modeling of ship maneuvering motion. |
doi_str_mv | 10.1115/1.4064856 |
format | Article |
fullrecord | <record><control><sourceid>asme_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1115_1_4064856</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1197586</sourcerecordid><originalsourceid>FETCH-LOGICAL-a180t-37c6d782fa34b9cfb266639609bfdda8f6813763a71de0b6ebf908eef667ecf23</originalsourceid><addsrcrecordid>eNo1kDFPwzAQhS0EEqUwsDN4ZUix48axx1KVFtEAoiCxRU5yLq4SO7KTSvwS_i6pKNOT7r579_QQuqZkQilN7uhkSvhUJPwEjWgSi0hI_nmKRkTIOEpjKs_RRQg7QihjCRmhn1ml2s7sAS9sgKaoATuNs77uTPQE3kKNl6oPwSiLX70rIQT8Bls_qHE24HsVoMLO4hX03oTOlDhz1XC1KT2ANXaLtfP42dlWedVA5_-Jw2p4tfkyLc6UhX4P_jDLXDc4X6IzreoAV0cdo4-Hxft8Fa1flo_z2TpSVJAuYmnJq1TEWrFpIUtdxJxzJjmRha4qJTQXlKWcqZRWQAoOhZZEAGjOUyh1zMbo9s-39C4EDzpvvWmU_84pyQ-N5jQ_NjqwN3-sCg3kO9d7O0QbKJkmgrNfvq51Kg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Adaptive Ensemble of Multi-Kernel Gaussian Process Regressions Based on Heuristic Model Screening for Nonparametric Modeling of Ship Maneuvering Motion</title><source>ASME Transactions Journals (Current)</source><creator>Jiang, Lichao ; Shang, Xiaobing ; Qi, Xinyu ; Ouyang, Zilu ; Zhang, Zhi</creator><creatorcontrib>Jiang, Lichao ; Shang, Xiaobing ; Qi, Xinyu ; Ouyang, Zilu ; Zhang, Zhi</creatorcontrib><description>Gaussian process regression (GPR) is a commonly used approach for establishing the nonparametric models of ship maneuvering motion, and its performance depends on the selection of the kernel function. However, no single kernel function can be universally applied to all nonparametric models of ship maneuvering motion, which may compromise the robustness of GPR. To address this issue, an adaptive ensemble of multi-kernel GPRs based on heuristic model screening (AEGPR-HMS) is proposed in this paper. In the proposed method, four kernel functions are involved in constructing the ensemble model. The HMS method is introduced to determine the weights of individual-based GPR models, which can be adaptively assigned according to the baseline GPR model. To determine the hyper-parameters of these kernel functions, the genetic algorithm is also employed to compute the optimal values. The KVLCC2 tanker provided by the SIMMAN 2008 workshop is used to validate the performance of the proposed method. The results demonstrate that the AEGPR-HMS is an efficient and robust method for nonparametric modeling of ship maneuvering motion.</description><identifier>ISSN: 0892-7219</identifier><identifier>EISSN: 1528-896X</identifier><identifier>DOI: 10.1115/1.4064856</identifier><language>eng</language><publisher>ASME</publisher><subject>Ocean Space Utilization</subject><ispartof>Journal of offshore mechanics and Arctic engineering, 2025-02, Vol.147 (1)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a180t-37c6d782fa34b9cfb266639609bfdda8f6813763a71de0b6ebf908eef667ecf23</citedby><cites>FETCH-LOGICAL-a180t-37c6d782fa34b9cfb266639609bfdda8f6813763a71de0b6ebf908eef667ecf23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924,38519</link.rule.ids></links><search><creatorcontrib>Jiang, Lichao</creatorcontrib><creatorcontrib>Shang, Xiaobing</creatorcontrib><creatorcontrib>Qi, Xinyu</creatorcontrib><creatorcontrib>Ouyang, Zilu</creatorcontrib><creatorcontrib>Zhang, Zhi</creatorcontrib><title>Adaptive Ensemble of Multi-Kernel Gaussian Process Regressions Based on Heuristic Model Screening for Nonparametric Modeling of Ship Maneuvering Motion</title><title>Journal of offshore mechanics and Arctic engineering</title><addtitle>J. Offshore Mech. Arct. Eng</addtitle><description>Gaussian process regression (GPR) is a commonly used approach for establishing the nonparametric models of ship maneuvering motion, and its performance depends on the selection of the kernel function. However, no single kernel function can be universally applied to all nonparametric models of ship maneuvering motion, which may compromise the robustness of GPR. To address this issue, an adaptive ensemble of multi-kernel GPRs based on heuristic model screening (AEGPR-HMS) is proposed in this paper. In the proposed method, four kernel functions are involved in constructing the ensemble model. The HMS method is introduced to determine the weights of individual-based GPR models, which can be adaptively assigned according to the baseline GPR model. To determine the hyper-parameters of these kernel functions, the genetic algorithm is also employed to compute the optimal values. The KVLCC2 tanker provided by the SIMMAN 2008 workshop is used to validate the performance of the proposed method. The results demonstrate that the AEGPR-HMS is an efficient and robust method for nonparametric modeling of ship maneuvering motion.</description><subject>Ocean Space Utilization</subject><issn>0892-7219</issn><issn>1528-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNo1kDFPwzAQhS0EEqUwsDN4ZUix48axx1KVFtEAoiCxRU5yLq4SO7KTSvwS_i6pKNOT7r579_QQuqZkQilN7uhkSvhUJPwEjWgSi0hI_nmKRkTIOEpjKs_RRQg7QihjCRmhn1ml2s7sAS9sgKaoATuNs77uTPQE3kKNl6oPwSiLX70rIQT8Bls_qHE24HsVoMLO4hX03oTOlDhz1XC1KT2ANXaLtfP42dlWedVA5_-Jw2p4tfkyLc6UhX4P_jDLXDc4X6IzreoAV0cdo4-Hxft8Fa1flo_z2TpSVJAuYmnJq1TEWrFpIUtdxJxzJjmRha4qJTQXlKWcqZRWQAoOhZZEAGjOUyh1zMbo9s-39C4EDzpvvWmU_84pyQ-N5jQ_NjqwN3-sCg3kO9d7O0QbKJkmgrNfvq51Kg</recordid><startdate>20250201</startdate><enddate>20250201</enddate><creator>Jiang, Lichao</creator><creator>Shang, Xiaobing</creator><creator>Qi, Xinyu</creator><creator>Ouyang, Zilu</creator><creator>Zhang, Zhi</creator><general>ASME</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20250201</creationdate><title>Adaptive Ensemble of Multi-Kernel Gaussian Process Regressions Based on Heuristic Model Screening for Nonparametric Modeling of Ship Maneuvering Motion</title><author>Jiang, Lichao ; Shang, Xiaobing ; Qi, Xinyu ; Ouyang, Zilu ; Zhang, Zhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a180t-37c6d782fa34b9cfb266639609bfdda8f6813763a71de0b6ebf908eef667ecf23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Ocean Space Utilization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Lichao</creatorcontrib><creatorcontrib>Shang, Xiaobing</creatorcontrib><creatorcontrib>Qi, Xinyu</creatorcontrib><creatorcontrib>Ouyang, Zilu</creatorcontrib><creatorcontrib>Zhang, Zhi</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of offshore mechanics and Arctic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Lichao</au><au>Shang, Xiaobing</au><au>Qi, Xinyu</au><au>Ouyang, Zilu</au><au>Zhang, Zhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Ensemble of Multi-Kernel Gaussian Process Regressions Based on Heuristic Model Screening for Nonparametric Modeling of Ship Maneuvering Motion</atitle><jtitle>Journal of offshore mechanics and Arctic engineering</jtitle><stitle>J. Offshore Mech. Arct. Eng</stitle><date>2025-02-01</date><risdate>2025</risdate><volume>147</volume><issue>1</issue><issn>0892-7219</issn><eissn>1528-896X</eissn><abstract>Gaussian process regression (GPR) is a commonly used approach for establishing the nonparametric models of ship maneuvering motion, and its performance depends on the selection of the kernel function. However, no single kernel function can be universally applied to all nonparametric models of ship maneuvering motion, which may compromise the robustness of GPR. To address this issue, an adaptive ensemble of multi-kernel GPRs based on heuristic model screening (AEGPR-HMS) is proposed in this paper. In the proposed method, four kernel functions are involved in constructing the ensemble model. The HMS method is introduced to determine the weights of individual-based GPR models, which can be adaptively assigned according to the baseline GPR model. To determine the hyper-parameters of these kernel functions, the genetic algorithm is also employed to compute the optimal values. The KVLCC2 tanker provided by the SIMMAN 2008 workshop is used to validate the performance of the proposed method. The results demonstrate that the AEGPR-HMS is an efficient and robust method for nonparametric modeling of ship maneuvering motion.</abstract><pub>ASME</pub><doi>10.1115/1.4064856</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0892-7219 |
ispartof | Journal of offshore mechanics and Arctic engineering, 2025-02, Vol.147 (1) |
issn | 0892-7219 1528-896X |
language | eng |
recordid | cdi_crossref_primary_10_1115_1_4064856 |
source | ASME Transactions Journals (Current) |
subjects | Ocean Space Utilization |
title | Adaptive Ensemble of Multi-Kernel Gaussian Process Regressions Based on Heuristic Model Screening for Nonparametric Modeling of Ship Maneuvering Motion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T07%3A43%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-asme_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Ensemble%20of%20Multi-Kernel%20Gaussian%20Process%20Regressions%20Based%20on%20Heuristic%20Model%20Screening%20for%20Nonparametric%20Modeling%20of%20Ship%20Maneuvering%20Motion&rft.jtitle=Journal%20of%20offshore%20mechanics%20and%20Arctic%20engineering&rft.au=Jiang,%20Lichao&rft.date=2025-02-01&rft.volume=147&rft.issue=1&rft.issn=0892-7219&rft.eissn=1528-896X&rft_id=info:doi/10.1115/1.4064856&rft_dat=%3Casme_cross%3E1197586%3C/asme_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |