Mechanical Characterization of Supernumerary Robotic Tails for Human Balance Augmentation
Humans are intrinsically unstable in quiet stance from a rigid body system viewpoint; however, they maintain balance, thanks to neuro-muscular sensory control properties. With increasing levels of balance related incidents in industrial and ageing populations globally each year, the development of a...
Gespeichert in:
Veröffentlicht in: | Journal of mechanisms and robotics 2024-06, Vol.16 (6) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | |
container_title | Journal of mechanisms and robotics |
container_volume | 16 |
creator | Abeywardena, Sajeeva Anwar, Eisa Charles Miller, Stuart Farkhatdinov, Ildar |
description | Humans are intrinsically unstable in quiet stance from a rigid body system viewpoint; however, they maintain balance, thanks to neuro-muscular sensory control properties. With increasing levels of balance related incidents in industrial and ageing populations globally each year, the development of assistive mechanisms to augment human balance is paramount. This work investigates the mechanical characteristics of kinematically dissimilar one and two degrees-of-freedom (DoF) supernumerary robotic tails for balance augmentation. Through dynamic simulations and manipulability assessments, the importance of variable coupling inertia in creating a sufficient reaction torque is highlighted. It is shown that two-DoF tails with solely revolute joints are best suited to address the balance augmentation issue. Within the two-DoF options, the characteristics of open versus closed loop tails are investigated, with the ultimate design selection requiring trade-offs between environmental workspace, biomechanical factors, and manufacturing ease to be made. |
doi_str_mv | 10.1115/1.4063094 |
format | Article |
fullrecord | <record><control><sourceid>asme_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1115_1_4063094</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1166124</sourcerecordid><originalsourceid>FETCH-LOGICAL-a285t-ed0d7a0926289d85ecb421a409d77d40f6160e9acb25543ae2fcd39a320c95b83</originalsourceid><addsrcrecordid>eNo9kD1PwzAYhC0EEqUwsDN4ZUh5_dl4LBVQpCIkKANT9MZxaKrEruxkgF9PoIjpbnjudDpCLhnMGGPqhs0kaAFGHpEJM5JnUjA4_vfAT8lZSjsArbRQE_L-5OwWfWOxpcstRrS9i80X9k3wNNT0ddi76IfORYyf9CWUoW8s3WDTJlqHSFdDh57eYoveOroYPjrn-9_0OTmpsU3u4k-n5O3-brNcZevnh8flYp0hz1WfuQqqOYLhmuemypWzpeQMJZhqPq8k1JppcAZtyZWSAh2vbSUMCg7WqDIXU3J96LUxpBRdXexj041rCwbFzycFK_4-GdmrA4upc8UuDNGP00ZKa8al-AYsmV2U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mechanical Characterization of Supernumerary Robotic Tails for Human Balance Augmentation</title><source>ASME Transactions Journals (Current)</source><creator>Abeywardena, Sajeeva ; Anwar, Eisa ; Charles Miller, Stuart ; Farkhatdinov, Ildar</creator><creatorcontrib>Abeywardena, Sajeeva ; Anwar, Eisa ; Charles Miller, Stuart ; Farkhatdinov, Ildar</creatorcontrib><description>Humans are intrinsically unstable in quiet stance from a rigid body system viewpoint; however, they maintain balance, thanks to neuro-muscular sensory control properties. With increasing levels of balance related incidents in industrial and ageing populations globally each year, the development of assistive mechanisms to augment human balance is paramount. This work investigates the mechanical characteristics of kinematically dissimilar one and two degrees-of-freedom (DoF) supernumerary robotic tails for balance augmentation. Through dynamic simulations and manipulability assessments, the importance of variable coupling inertia in creating a sufficient reaction torque is highlighted. It is shown that two-DoF tails with solely revolute joints are best suited to address the balance augmentation issue. Within the two-DoF options, the characteristics of open versus closed loop tails are investigated, with the ultimate design selection requiring trade-offs between environmental workspace, biomechanical factors, and manufacturing ease to be made.</description><identifier>ISSN: 1942-4302</identifier><identifier>EISSN: 1942-4310</identifier><identifier>DOI: 10.1115/1.4063094</identifier><language>eng</language><publisher>ASME</publisher><ispartof>Journal of mechanisms and robotics, 2024-06, Vol.16 (6)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a285t-ed0d7a0926289d85ecb421a409d77d40f6160e9acb25543ae2fcd39a320c95b83</citedby><cites>FETCH-LOGICAL-a285t-ed0d7a0926289d85ecb421a409d77d40f6160e9acb25543ae2fcd39a320c95b83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,38520</link.rule.ids></links><search><creatorcontrib>Abeywardena, Sajeeva</creatorcontrib><creatorcontrib>Anwar, Eisa</creatorcontrib><creatorcontrib>Charles Miller, Stuart</creatorcontrib><creatorcontrib>Farkhatdinov, Ildar</creatorcontrib><title>Mechanical Characterization of Supernumerary Robotic Tails for Human Balance Augmentation</title><title>Journal of mechanisms and robotics</title><addtitle>J. Mechanisms Robotics</addtitle><description>Humans are intrinsically unstable in quiet stance from a rigid body system viewpoint; however, they maintain balance, thanks to neuro-muscular sensory control properties. With increasing levels of balance related incidents in industrial and ageing populations globally each year, the development of assistive mechanisms to augment human balance is paramount. This work investigates the mechanical characteristics of kinematically dissimilar one and two degrees-of-freedom (DoF) supernumerary robotic tails for balance augmentation. Through dynamic simulations and manipulability assessments, the importance of variable coupling inertia in creating a sufficient reaction torque is highlighted. It is shown that two-DoF tails with solely revolute joints are best suited to address the balance augmentation issue. Within the two-DoF options, the characteristics of open versus closed loop tails are investigated, with the ultimate design selection requiring trade-offs between environmental workspace, biomechanical factors, and manufacturing ease to be made.</description><issn>1942-4302</issn><issn>1942-4310</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kD1PwzAYhC0EEqUwsDN4ZUh5_dl4LBVQpCIkKANT9MZxaKrEruxkgF9PoIjpbnjudDpCLhnMGGPqhs0kaAFGHpEJM5JnUjA4_vfAT8lZSjsArbRQE_L-5OwWfWOxpcstRrS9i80X9k3wNNT0ddi76IfORYyf9CWUoW8s3WDTJlqHSFdDh57eYoveOroYPjrn-9_0OTmpsU3u4k-n5O3-brNcZevnh8flYp0hz1WfuQqqOYLhmuemypWzpeQMJZhqPq8k1JppcAZtyZWSAh2vbSUMCg7WqDIXU3J96LUxpBRdXexj041rCwbFzycFK_4-GdmrA4upc8UuDNGP00ZKa8al-AYsmV2U</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Abeywardena, Sajeeva</creator><creator>Anwar, Eisa</creator><creator>Charles Miller, Stuart</creator><creator>Farkhatdinov, Ildar</creator><general>ASME</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240601</creationdate><title>Mechanical Characterization of Supernumerary Robotic Tails for Human Balance Augmentation</title><author>Abeywardena, Sajeeva ; Anwar, Eisa ; Charles Miller, Stuart ; Farkhatdinov, Ildar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a285t-ed0d7a0926289d85ecb421a409d77d40f6160e9acb25543ae2fcd39a320c95b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abeywardena, Sajeeva</creatorcontrib><creatorcontrib>Anwar, Eisa</creatorcontrib><creatorcontrib>Charles Miller, Stuart</creatorcontrib><creatorcontrib>Farkhatdinov, Ildar</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mechanisms and robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abeywardena, Sajeeva</au><au>Anwar, Eisa</au><au>Charles Miller, Stuart</au><au>Farkhatdinov, Ildar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical Characterization of Supernumerary Robotic Tails for Human Balance Augmentation</atitle><jtitle>Journal of mechanisms and robotics</jtitle><stitle>J. Mechanisms Robotics</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>16</volume><issue>6</issue><issn>1942-4302</issn><eissn>1942-4310</eissn><abstract>Humans are intrinsically unstable in quiet stance from a rigid body system viewpoint; however, they maintain balance, thanks to neuro-muscular sensory control properties. With increasing levels of balance related incidents in industrial and ageing populations globally each year, the development of assistive mechanisms to augment human balance is paramount. This work investigates the mechanical characteristics of kinematically dissimilar one and two degrees-of-freedom (DoF) supernumerary robotic tails for balance augmentation. Through dynamic simulations and manipulability assessments, the importance of variable coupling inertia in creating a sufficient reaction torque is highlighted. It is shown that two-DoF tails with solely revolute joints are best suited to address the balance augmentation issue. Within the two-DoF options, the characteristics of open versus closed loop tails are investigated, with the ultimate design selection requiring trade-offs between environmental workspace, biomechanical factors, and manufacturing ease to be made.</abstract><pub>ASME</pub><doi>10.1115/1.4063094</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1942-4302 |
ispartof | Journal of mechanisms and robotics, 2024-06, Vol.16 (6) |
issn | 1942-4302 1942-4310 |
language | eng |
recordid | cdi_crossref_primary_10_1115_1_4063094 |
source | ASME Transactions Journals (Current) |
title | Mechanical Characterization of Supernumerary Robotic Tails for Human Balance Augmentation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T22%3A55%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-asme_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20Characterization%20of%20Supernumerary%20Robotic%20Tails%20for%20Human%20Balance%20Augmentation&rft.jtitle=Journal%20of%20mechanisms%20and%20robotics&rft.au=Abeywardena,%20Sajeeva&rft.date=2024-06-01&rft.volume=16&rft.issue=6&rft.issn=1942-4302&rft.eissn=1942-4310&rft_id=info:doi/10.1115/1.4063094&rft_dat=%3Casme_cross%3E1166124%3C/asme_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |