Designing Hybrid Mechanical Ventilator System Based on Arduino and Raspberry Pi 4

Mechanical ventilators are advanced life-supporting machines in this century. The ventilator needs to be safe, flexible, and easy for competent clinicians to use. Since ventilators supply the patient with gas, they need pneumatic components to be present. First technology ventilators were typically...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medical devices 2022-03, Vol.16 (1)
Hauptverfasser: Malaekah, Emad, Al Awam, Khaled, Farouk, Husham, Abuabid, Elamir, Mukhanov, Victor V, Alahmari, Abdulwahab, Alshagag, Hasan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mechanical ventilators are advanced life-supporting machines in this century. The ventilator needs to be safe, flexible, and easy for competent clinicians to use. Since ventilators supply the patient with gas, they need pneumatic components to be present. First technology ventilators were typically powered by pneumatic energy. Gas pressure is used to power ventilators as well as ventilate patients. Nowadays, ventilators are operated electronically with the useful microprocessor tool. This proposal aims to design a simple portable mechanical ventilator that includes measuring some important physiological variables such as respiratory rate, heart rate, and O2 saturation, which can be utilized in hospital and at home. The proposed system includes Arduino, Raspberry pi4, touch screen, and graphical user interface. This study showed a significant individual performance for measuring some important parameters such as flow rate, tidal volume, and minute ventilation. The accuracy of measuring the flow rate was 72%. The Cohen's kappa (CK) was estimated to be 0.61. The accuracy of calculated the tidal volume was estimated at 83% with 0.80 CK. The accuracy of measuring the O2 saturation was estimated at 99% with 0.99 CK. The advantages of the proposed design are cost-effective, safe, flexible, and easy to use. Also, this system is smart and can control its transactions, so it can be used at home without the need for professional help. The operating parameters can also be set by the user with a simple user interface.
ISSN:1932-6181
1932-619X
DOI:10.1115/1.4054036