Gradient-Free Optimization in Thermoacoustics: Application to a Low-Order Model

Machine learning and automatized routines for parameter optimization have experienced a surge in development in the past years, mostly caused by the increasing availability of computing capacity. Gradient-free optimization can avoid cumbersome theoretical studies as input parameters are purely adapt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of engineering for gas turbines and power 2022-05, Vol.144 (5)
Hauptverfasser: Reumschüssel, Johann Moritz, von Saldern, Jakob G. R, Li, Yiqing, Paschereit, Christian Oliver, Orchini, Alessandro
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Journal of engineering for gas turbines and power
container_volume 144
creator Reumschüssel, Johann Moritz
von Saldern, Jakob G. R
Li, Yiqing
Paschereit, Christian Oliver
Orchini, Alessandro
description Machine learning and automatized routines for parameter optimization have experienced a surge in development in the past years, mostly caused by the increasing availability of computing capacity. Gradient-free optimization can avoid cumbersome theoretical studies as input parameters are purely adapted based on output data. As no knowledge about the objective function is provided to the algorithms, this approach might reveal unconventional solutions to complex problems that were out of scope of classical solution strategies. In this study, the potential of these optimization methods on thermoacoustic problems is examined. The optimization algorithms are applied to a generic low-order thermoacoustic can-combustor model with several fuel injectors at different locations. We use three optimization algorithms – the well established downhill simplex method, the recently proposed explorative gradient method, and an evolutionary algorithm – to find optimal fuel distributions across the fuel lines while maintaining the amount of consumed fuel constant. The objective is to have minimal pulsation amplitudes. We compare the results and efficiency of the gradient-free algorithms. Additionally, we employ model-based linear stability analysis to calculate the growth rates of the dominant thermoacoustic modes. This allows us to highlight general and thermoacoustic-specific features of the optimization methods and results. The findings of this study show the potential of gradient-free optimization methods on combustor design for tackling thermoacoustic problems, and motivate further research in this direction.
doi_str_mv 10.1115/1.4052087
format Article
fullrecord <record><control><sourceid>asme_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1115_1_4052087</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1115689</sourcerecordid><originalsourceid>FETCH-LOGICAL-a250t-1f02fc16a0c138f9759c81d4dacf9605e12fe9d8bbf9bfdb74522cff0251c4d33</originalsourceid><addsrcrecordid>eNotkD1PwzAYhC0EEqEwsDN4ZXDx69iJzVZVtCAVZSlz5PhDuGriyE6F4NdTaKcb7rnT6RC6BzoHAPEEc04Fo7K-QAUIJolUoC5RQWvOCK-VuEY3Oe8ohbLkdYGaddI2uGEiq-QcbsYp9OFHTyEOOAx4--lSH7WJhzwFk5_xYhz3wZz8KWKNN_GLNMm6hN-jdftbdOX1Pru7s87Qx-plu3wlm2b9tlxsiGaCTgQ8Zd5ApamBUnpVC2UkWG618aqiwgHzTlnZdV513nY1F4wZf0wJMNyW5Qw9nnpNijkn59sxhV6n7xZo-_dEC-35iSP7cGJ17l27i4c0HKf9U5VU5S_TMFoZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Gradient-Free Optimization in Thermoacoustics: Application to a Low-Order Model</title><source>ASME_美国机械工程师学会现刊</source><source>Alma/SFX Local Collection</source><creator>Reumschüssel, Johann Moritz ; von Saldern, Jakob G. R ; Li, Yiqing ; Paschereit, Christian Oliver ; Orchini, Alessandro</creator><creatorcontrib>Reumschüssel, Johann Moritz ; von Saldern, Jakob G. R ; Li, Yiqing ; Paschereit, Christian Oliver ; Orchini, Alessandro</creatorcontrib><description>Machine learning and automatized routines for parameter optimization have experienced a surge in development in the past years, mostly caused by the increasing availability of computing capacity. Gradient-free optimization can avoid cumbersome theoretical studies as input parameters are purely adapted based on output data. As no knowledge about the objective function is provided to the algorithms, this approach might reveal unconventional solutions to complex problems that were out of scope of classical solution strategies. In this study, the potential of these optimization methods on thermoacoustic problems is examined. The optimization algorithms are applied to a generic low-order thermoacoustic can-combustor model with several fuel injectors at different locations. We use three optimization algorithms – the well established downhill simplex method, the recently proposed explorative gradient method, and an evolutionary algorithm – to find optimal fuel distributions across the fuel lines while maintaining the amount of consumed fuel constant. The objective is to have minimal pulsation amplitudes. We compare the results and efficiency of the gradient-free algorithms. Additionally, we employ model-based linear stability analysis to calculate the growth rates of the dominant thermoacoustic modes. This allows us to highlight general and thermoacoustic-specific features of the optimization methods and results. The findings of this study show the potential of gradient-free optimization methods on combustor design for tackling thermoacoustic problems, and motivate further research in this direction.</description><identifier>ISSN: 0742-4795</identifier><identifier>EISSN: 1528-8919</identifier><identifier>DOI: 10.1115/1.4052087</identifier><language>eng</language><publisher>ASME</publisher><ispartof>Journal of engineering for gas turbines and power, 2022-05, Vol.144 (5)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a250t-1f02fc16a0c138f9759c81d4dacf9605e12fe9d8bbf9bfdb74522cff0251c4d33</citedby><cites>FETCH-LOGICAL-a250t-1f02fc16a0c138f9759c81d4dacf9605e12fe9d8bbf9bfdb74522cff0251c4d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,38520</link.rule.ids></links><search><creatorcontrib>Reumschüssel, Johann Moritz</creatorcontrib><creatorcontrib>von Saldern, Jakob G. R</creatorcontrib><creatorcontrib>Li, Yiqing</creatorcontrib><creatorcontrib>Paschereit, Christian Oliver</creatorcontrib><creatorcontrib>Orchini, Alessandro</creatorcontrib><title>Gradient-Free Optimization in Thermoacoustics: Application to a Low-Order Model</title><title>Journal of engineering for gas turbines and power</title><addtitle>J. Eng. Gas Turbines Power</addtitle><description>Machine learning and automatized routines for parameter optimization have experienced a surge in development in the past years, mostly caused by the increasing availability of computing capacity. Gradient-free optimization can avoid cumbersome theoretical studies as input parameters are purely adapted based on output data. As no knowledge about the objective function is provided to the algorithms, this approach might reveal unconventional solutions to complex problems that were out of scope of classical solution strategies. In this study, the potential of these optimization methods on thermoacoustic problems is examined. The optimization algorithms are applied to a generic low-order thermoacoustic can-combustor model with several fuel injectors at different locations. We use three optimization algorithms – the well established downhill simplex method, the recently proposed explorative gradient method, and an evolutionary algorithm – to find optimal fuel distributions across the fuel lines while maintaining the amount of consumed fuel constant. The objective is to have minimal pulsation amplitudes. We compare the results and efficiency of the gradient-free algorithms. Additionally, we employ model-based linear stability analysis to calculate the growth rates of the dominant thermoacoustic modes. This allows us to highlight general and thermoacoustic-specific features of the optimization methods and results. The findings of this study show the potential of gradient-free optimization methods on combustor design for tackling thermoacoustic problems, and motivate further research in this direction.</description><issn>0742-4795</issn><issn>1528-8919</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotkD1PwzAYhC0EEqEwsDN4ZXDx69iJzVZVtCAVZSlz5PhDuGriyE6F4NdTaKcb7rnT6RC6BzoHAPEEc04Fo7K-QAUIJolUoC5RQWvOCK-VuEY3Oe8ohbLkdYGaddI2uGEiq-QcbsYp9OFHTyEOOAx4--lSH7WJhzwFk5_xYhz3wZz8KWKNN_GLNMm6hN-jdftbdOX1Pru7s87Qx-plu3wlm2b9tlxsiGaCTgQ8Zd5ApamBUnpVC2UkWG618aqiwgHzTlnZdV513nY1F4wZf0wJMNyW5Qw9nnpNijkn59sxhV6n7xZo-_dEC-35iSP7cGJ17l27i4c0HKf9U5VU5S_TMFoZ</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Reumschüssel, Johann Moritz</creator><creator>von Saldern, Jakob G. R</creator><creator>Li, Yiqing</creator><creator>Paschereit, Christian Oliver</creator><creator>Orchini, Alessandro</creator><general>ASME</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220501</creationdate><title>Gradient-Free Optimization in Thermoacoustics: Application to a Low-Order Model</title><author>Reumschüssel, Johann Moritz ; von Saldern, Jakob G. R ; Li, Yiqing ; Paschereit, Christian Oliver ; Orchini, Alessandro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a250t-1f02fc16a0c138f9759c81d4dacf9605e12fe9d8bbf9bfdb74522cff0251c4d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reumschüssel, Johann Moritz</creatorcontrib><creatorcontrib>von Saldern, Jakob G. R</creatorcontrib><creatorcontrib>Li, Yiqing</creatorcontrib><creatorcontrib>Paschereit, Christian Oliver</creatorcontrib><creatorcontrib>Orchini, Alessandro</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of engineering for gas turbines and power</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reumschüssel, Johann Moritz</au><au>von Saldern, Jakob G. R</au><au>Li, Yiqing</au><au>Paschereit, Christian Oliver</au><au>Orchini, Alessandro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gradient-Free Optimization in Thermoacoustics: Application to a Low-Order Model</atitle><jtitle>Journal of engineering for gas turbines and power</jtitle><stitle>J. Eng. Gas Turbines Power</stitle><date>2022-05-01</date><risdate>2022</risdate><volume>144</volume><issue>5</issue><issn>0742-4795</issn><eissn>1528-8919</eissn><abstract>Machine learning and automatized routines for parameter optimization have experienced a surge in development in the past years, mostly caused by the increasing availability of computing capacity. Gradient-free optimization can avoid cumbersome theoretical studies as input parameters are purely adapted based on output data. As no knowledge about the objective function is provided to the algorithms, this approach might reveal unconventional solutions to complex problems that were out of scope of classical solution strategies. In this study, the potential of these optimization methods on thermoacoustic problems is examined. The optimization algorithms are applied to a generic low-order thermoacoustic can-combustor model with several fuel injectors at different locations. We use three optimization algorithms – the well established downhill simplex method, the recently proposed explorative gradient method, and an evolutionary algorithm – to find optimal fuel distributions across the fuel lines while maintaining the amount of consumed fuel constant. The objective is to have minimal pulsation amplitudes. We compare the results and efficiency of the gradient-free algorithms. Additionally, we employ model-based linear stability analysis to calculate the growth rates of the dominant thermoacoustic modes. This allows us to highlight general and thermoacoustic-specific features of the optimization methods and results. The findings of this study show the potential of gradient-free optimization methods on combustor design for tackling thermoacoustic problems, and motivate further research in this direction.</abstract><pub>ASME</pub><doi>10.1115/1.4052087</doi></addata></record>
fulltext fulltext
identifier ISSN: 0742-4795
ispartof Journal of engineering for gas turbines and power, 2022-05, Vol.144 (5)
issn 0742-4795
1528-8919
language eng
recordid cdi_crossref_primary_10_1115_1_4052087
source ASME_美国机械工程师学会现刊; Alma/SFX Local Collection
title Gradient-Free Optimization in Thermoacoustics: Application to a Low-Order Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T16%3A34%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-asme_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gradient-Free%20Optimization%20in%20Thermoacoustics:%20Application%20to%20a%20Low-Order%20Model&rft.jtitle=Journal%20of%20engineering%20for%20gas%20turbines%20and%20power&rft.au=Reumsch%C3%BCssel,%20Johann%20Moritz&rft.date=2022-05-01&rft.volume=144&rft.issue=5&rft.issn=0742-4795&rft.eissn=1528-8919&rft_id=info:doi/10.1115/1.4052087&rft_dat=%3Casme_cross%3E1115689%3C/asme_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true