Physics-Based Gaussian Process Method for Predicting Average Product Lifetime in Design Stage

The average lifetime or the mean time to failure (MTTF) of a product is an important metric to measure the product reliability. Current methods of evaluating the MTTF are mainly based on statistics or data. They need lifetime testing on a number of products to get the lifetime samples, which are the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computing and information science in engineering 2021-08, Vol.21 (4)
Hauptverfasser: Wei, Xinpeng, Han, Daoru, Du, Xiaoping
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Journal of computing and information science in engineering
container_volume 21
creator Wei, Xinpeng
Han, Daoru
Du, Xiaoping
description The average lifetime or the mean time to failure (MTTF) of a product is an important metric to measure the product reliability. Current methods of evaluating the MTTF are mainly based on statistics or data. They need lifetime testing on a number of products to get the lifetime samples, which are then used to estimate the MTTF. The lifetime testing, however, is expensive in terms of both time and cost. The efficiency is also low because it cannot be effectively incorporated in the early design stage where many physics-based models are available. We propose to predict the MTTF in the design stage by means of a physics-based Gaussian process (GP) method. Since the physics-based models are usually computationally demanding, we face a problem with both big data (on the model input side) and small data (on the model output side). The proposed adaptive supervised training method with the Gaussian process regression can quickly predict the MTTF with a reduced number of physical model calls. The proposed method can enable continually improved design by changing design variables until reliability measures, including the MTTF, are satisfied. The effectiveness of the method is demonstrated by three examples.
doi_str_mv 10.1115/1.4049509
format Article
fullrecord <record><control><sourceid>asme_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1115_1_4049509</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1094020</sourcerecordid><originalsourceid>FETCH-LOGICAL-a285t-f9bcec8a5b7420226e46af0823efa88318a2c5f5d9952ba1a78e9bd604b3b7e53</originalsourceid><addsrcrecordid>eNot0EFLAzEQBeAgCtbqwbuHXD1snWST3eRYq1ahYkE9ypLNTtoUuyuZrdB_70p7mmH4eAyPsWsBEyGEvhMTBcpqsCdsJKxSWQmlOR12nUNmjSzP2QXRBgBKKIoR-1qu9xQ9ZfeOsOFztyOKruXL1Hkk4q_Yr7uGhy4NJ2yi72O74tNfTG6F_6rZ-Z4vYsA-bpHHlj8gxVXL3_sBXLKz4L4Jr45zzD6fHj9mz9nibf4ymy4yJ43us2Brj944XZdKgpQFqsIFMDLH4IzJhXHS66Aba7WsnXClQVs3Bag6r0vU-ZjdHnJ96ogShuonxa1L-0pA9d9LJapjL4O9OVhHW6w23S61w2sDtAok5H9k1F6f</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Physics-Based Gaussian Process Method for Predicting Average Product Lifetime in Design Stage</title><source>ASME Transactions Journals (Current)</source><source>Alma/SFX Local Collection</source><creator>Wei, Xinpeng ; Han, Daoru ; Du, Xiaoping</creator><creatorcontrib>Wei, Xinpeng ; Han, Daoru ; Du, Xiaoping</creatorcontrib><description>The average lifetime or the mean time to failure (MTTF) of a product is an important metric to measure the product reliability. Current methods of evaluating the MTTF are mainly based on statistics or data. They need lifetime testing on a number of products to get the lifetime samples, which are then used to estimate the MTTF. The lifetime testing, however, is expensive in terms of both time and cost. The efficiency is also low because it cannot be effectively incorporated in the early design stage where many physics-based models are available. We propose to predict the MTTF in the design stage by means of a physics-based Gaussian process (GP) method. Since the physics-based models are usually computationally demanding, we face a problem with both big data (on the model input side) and small data (on the model output side). The proposed adaptive supervised training method with the Gaussian process regression can quickly predict the MTTF with a reduced number of physical model calls. The proposed method can enable continually improved design by changing design variables until reliability measures, including the MTTF, are satisfied. The effectiveness of the method is demonstrated by three examples.</description><identifier>ISSN: 1530-9827</identifier><identifier>EISSN: 1944-7078</identifier><identifier>DOI: 10.1115/1.4049509</identifier><language>eng</language><publisher>ASME</publisher><ispartof>Journal of computing and information science in engineering, 2021-08, Vol.21 (4)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a285t-f9bcec8a5b7420226e46af0823efa88318a2c5f5d9952ba1a78e9bd604b3b7e53</citedby><cites>FETCH-LOGICAL-a285t-f9bcec8a5b7420226e46af0823efa88318a2c5f5d9952ba1a78e9bd604b3b7e53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,38520</link.rule.ids></links><search><creatorcontrib>Wei, Xinpeng</creatorcontrib><creatorcontrib>Han, Daoru</creatorcontrib><creatorcontrib>Du, Xiaoping</creatorcontrib><title>Physics-Based Gaussian Process Method for Predicting Average Product Lifetime in Design Stage</title><title>Journal of computing and information science in engineering</title><addtitle>J. Comput. Inf. Sci. Eng</addtitle><description>The average lifetime or the mean time to failure (MTTF) of a product is an important metric to measure the product reliability. Current methods of evaluating the MTTF are mainly based on statistics or data. They need lifetime testing on a number of products to get the lifetime samples, which are then used to estimate the MTTF. The lifetime testing, however, is expensive in terms of both time and cost. The efficiency is also low because it cannot be effectively incorporated in the early design stage where many physics-based models are available. We propose to predict the MTTF in the design stage by means of a physics-based Gaussian process (GP) method. Since the physics-based models are usually computationally demanding, we face a problem with both big data (on the model input side) and small data (on the model output side). The proposed adaptive supervised training method with the Gaussian process regression can quickly predict the MTTF with a reduced number of physical model calls. The proposed method can enable continually improved design by changing design variables until reliability measures, including the MTTF, are satisfied. The effectiveness of the method is demonstrated by three examples.</description><issn>1530-9827</issn><issn>1944-7078</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNot0EFLAzEQBeAgCtbqwbuHXD1snWST3eRYq1ahYkE9ypLNTtoUuyuZrdB_70p7mmH4eAyPsWsBEyGEvhMTBcpqsCdsJKxSWQmlOR12nUNmjSzP2QXRBgBKKIoR-1qu9xQ9ZfeOsOFztyOKruXL1Hkk4q_Yr7uGhy4NJ2yi72O74tNfTG6F_6rZ-Z4vYsA-bpHHlj8gxVXL3_sBXLKz4L4Jr45zzD6fHj9mz9nibf4ymy4yJ43us2Brj944XZdKgpQFqsIFMDLH4IzJhXHS66Aba7WsnXClQVs3Bag6r0vU-ZjdHnJ96ogShuonxa1L-0pA9d9LJapjL4O9OVhHW6w23S61w2sDtAok5H9k1F6f</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Wei, Xinpeng</creator><creator>Han, Daoru</creator><creator>Du, Xiaoping</creator><general>ASME</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210801</creationdate><title>Physics-Based Gaussian Process Method for Predicting Average Product Lifetime in Design Stage</title><author>Wei, Xinpeng ; Han, Daoru ; Du, Xiaoping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a285t-f9bcec8a5b7420226e46af0823efa88318a2c5f5d9952ba1a78e9bd604b3b7e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Xinpeng</creatorcontrib><creatorcontrib>Han, Daoru</creatorcontrib><creatorcontrib>Du, Xiaoping</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of computing and information science in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Xinpeng</au><au>Han, Daoru</au><au>Du, Xiaoping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physics-Based Gaussian Process Method for Predicting Average Product Lifetime in Design Stage</atitle><jtitle>Journal of computing and information science in engineering</jtitle><stitle>J. Comput. Inf. Sci. Eng</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>21</volume><issue>4</issue><issn>1530-9827</issn><eissn>1944-7078</eissn><abstract>The average lifetime or the mean time to failure (MTTF) of a product is an important metric to measure the product reliability. Current methods of evaluating the MTTF are mainly based on statistics or data. They need lifetime testing on a number of products to get the lifetime samples, which are then used to estimate the MTTF. The lifetime testing, however, is expensive in terms of both time and cost. The efficiency is also low because it cannot be effectively incorporated in the early design stage where many physics-based models are available. We propose to predict the MTTF in the design stage by means of a physics-based Gaussian process (GP) method. Since the physics-based models are usually computationally demanding, we face a problem with both big data (on the model input side) and small data (on the model output side). The proposed adaptive supervised training method with the Gaussian process regression can quickly predict the MTTF with a reduced number of physical model calls. The proposed method can enable continually improved design by changing design variables until reliability measures, including the MTTF, are satisfied. The effectiveness of the method is demonstrated by three examples.</abstract><pub>ASME</pub><doi>10.1115/1.4049509</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-9827
ispartof Journal of computing and information science in engineering, 2021-08, Vol.21 (4)
issn 1530-9827
1944-7078
language eng
recordid cdi_crossref_primary_10_1115_1_4049509
source ASME Transactions Journals (Current); Alma/SFX Local Collection
title Physics-Based Gaussian Process Method for Predicting Average Product Lifetime in Design Stage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A01%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-asme_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physics-Based%20Gaussian%20Process%20Method%20for%20Predicting%20Average%20Product%20Lifetime%20in%20Design%20Stage&rft.jtitle=Journal%20of%20computing%20and%20information%20science%20in%20engineering&rft.au=Wei,%20Xinpeng&rft.date=2021-08-01&rft.volume=21&rft.issue=4&rft.issn=1530-9827&rft.eissn=1944-7078&rft_id=info:doi/10.1115/1.4049509&rft_dat=%3Casme_cross%3E1094020%3C/asme_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true