Heuristic Optimization of Ribbed Cooling Channels With Variable Length and Roughness

This paper presents a heuristic optimization method for cooling channels with internal repeated-rib roughness. The method rapidly explores a design space to simultaneously optimize two geometric parameters, channel length, and rib roughness ratio. For a rapid and accurate optimization, the method co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of heat transfer 2020-11, Vol.142 (11)
Hauptverfasser: Ejaz, Faizan, Hwang, Leslie K, Kwon, Beomjin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page
container_title Journal of heat transfer
container_volume 142
creator Ejaz, Faizan
Hwang, Leslie K
Kwon, Beomjin
description This paper presents a heuristic optimization method for cooling channels with internal repeated-rib roughness. The method rapidly explores a design space to simultaneously optimize two geometric parameters, channel length, and rib roughness ratio. For a rapid and accurate optimization, the method combines a heuristic optimization technique, simulated annealing (SA), and numerically derived closed-form models of heat transfer and pressure drop. It is shown that approximately 1 million designs are evaluated within 6 s, resulting in optimal designs having minimal thermal resistance for given pressure thresholds. Closed-form correlations for developing and fully developed flow are derived by evaluating discrete design points using a finite volume model (FVM). The derived correlations predict the channel properties with acceptable ranges of mean absolute error (
doi_str_mv 10.1115/1.4047835
format Article
fullrecord <record><control><sourceid>asme_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1115_1_4047835</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1085372</sourcerecordid><originalsourceid>FETCH-LOGICAL-a250t-cf4576342223b4b483ab8b57573dcfa485c69e65e1d29d9015668694df2f84ec3</originalsourceid><addsrcrecordid>eNotkM9LwzAcxYMoOKcH7x5y9dCZb3606VGKbsJgMKYeS9ImbUaXjKQ76F9vZTs9Hnx4PD4IPQJZAIB4gQUnvJBMXKEZCCozWXJ2jWaEUJoBl3CL7lLaEwKM8XKGditzii6NrsGb4-gO7leNLngcLN46rU2LqxAG5ztc9cp7MyT87cYef6nolB4MXhvfTV35Fm_Dqeu9Seke3Vg1JPNwyTn6fH_bVatsvVl-VK_rTFFBxqyxXBQ545RSprnmkikttShEwdrGKi5Fk5cmFwZaWrYlAZHnMi95a6mV3DRsjp7Pu00MKUVj62N0BxV_aiD1v44a6ouOiX06syodTL0Pp-inaxMoBSso-wNgv1rH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Heuristic Optimization of Ribbed Cooling Channels With Variable Length and Roughness</title><source>ASME Transactions Journals (Current)</source><source>Alma/SFX Local Collection</source><creator>Ejaz, Faizan ; Hwang, Leslie K ; Kwon, Beomjin</creator><creatorcontrib>Ejaz, Faizan ; Hwang, Leslie K ; Kwon, Beomjin</creatorcontrib><description>This paper presents a heuristic optimization method for cooling channels with internal repeated-rib roughness. The method rapidly explores a design space to simultaneously optimize two geometric parameters, channel length, and rib roughness ratio. For a rapid and accurate optimization, the method combines a heuristic optimization technique, simulated annealing (SA), and numerically derived closed-form models of heat transfer and pressure drop. It is shown that approximately 1 million designs are evaluated within 6 s, resulting in optimal designs having minimal thermal resistance for given pressure thresholds. Closed-form correlations for developing and fully developed flow are derived by evaluating discrete design points using a finite volume model (FVM). The derived correlations predict the channel properties with acceptable ranges of mean absolute error (&lt;5% for Nusselt number and &lt; 15% for pressure drop) against the FVM. Optimal channel designs exhibit up to about 12 times greater performance factor compared to smooth channels, supporting the efficacy of optimization. The introduced method demonstrates the potential of rapid numerical optimization method in designing heat transfer devices with complex geometries.</description><identifier>ISSN: 0022-1481</identifier><identifier>EISSN: 1528-8943</identifier><identifier>DOI: 10.1115/1.4047835</identifier><language>eng</language><publisher>ASME</publisher><subject>Two-Phase Flow and Heat Transfer</subject><ispartof>Journal of heat transfer, 2020-11, Vol.142 (11)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a250t-cf4576342223b4b483ab8b57573dcfa485c69e65e1d29d9015668694df2f84ec3</citedby><cites>FETCH-LOGICAL-a250t-cf4576342223b4b483ab8b57573dcfa485c69e65e1d29d9015668694df2f84ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,38520</link.rule.ids></links><search><creatorcontrib>Ejaz, Faizan</creatorcontrib><creatorcontrib>Hwang, Leslie K</creatorcontrib><creatorcontrib>Kwon, Beomjin</creatorcontrib><title>Heuristic Optimization of Ribbed Cooling Channels With Variable Length and Roughness</title><title>Journal of heat transfer</title><addtitle>J. Heat Transfer</addtitle><description>This paper presents a heuristic optimization method for cooling channels with internal repeated-rib roughness. The method rapidly explores a design space to simultaneously optimize two geometric parameters, channel length, and rib roughness ratio. For a rapid and accurate optimization, the method combines a heuristic optimization technique, simulated annealing (SA), and numerically derived closed-form models of heat transfer and pressure drop. It is shown that approximately 1 million designs are evaluated within 6 s, resulting in optimal designs having minimal thermal resistance for given pressure thresholds. Closed-form correlations for developing and fully developed flow are derived by evaluating discrete design points using a finite volume model (FVM). The derived correlations predict the channel properties with acceptable ranges of mean absolute error (&lt;5% for Nusselt number and &lt; 15% for pressure drop) against the FVM. Optimal channel designs exhibit up to about 12 times greater performance factor compared to smooth channels, supporting the efficacy of optimization. The introduced method demonstrates the potential of rapid numerical optimization method in designing heat transfer devices with complex geometries.</description><subject>Two-Phase Flow and Heat Transfer</subject><issn>0022-1481</issn><issn>1528-8943</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNotkM9LwzAcxYMoOKcH7x5y9dCZb3606VGKbsJgMKYeS9ImbUaXjKQ76F9vZTs9Hnx4PD4IPQJZAIB4gQUnvJBMXKEZCCozWXJ2jWaEUJoBl3CL7lLaEwKM8XKGditzii6NrsGb4-gO7leNLngcLN46rU2LqxAG5ztc9cp7MyT87cYef6nolB4MXhvfTV35Fm_Dqeu9Seke3Vg1JPNwyTn6fH_bVatsvVl-VK_rTFFBxqyxXBQ545RSprnmkikttShEwdrGKi5Fk5cmFwZaWrYlAZHnMi95a6mV3DRsjp7Pu00MKUVj62N0BxV_aiD1v44a6ouOiX06syodTL0Pp-inaxMoBSso-wNgv1rH</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Ejaz, Faizan</creator><creator>Hwang, Leslie K</creator><creator>Kwon, Beomjin</creator><general>ASME</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20201101</creationdate><title>Heuristic Optimization of Ribbed Cooling Channels With Variable Length and Roughness</title><author>Ejaz, Faizan ; Hwang, Leslie K ; Kwon, Beomjin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a250t-cf4576342223b4b483ab8b57573dcfa485c69e65e1d29d9015668694df2f84ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Two-Phase Flow and Heat Transfer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ejaz, Faizan</creatorcontrib><creatorcontrib>Hwang, Leslie K</creatorcontrib><creatorcontrib>Kwon, Beomjin</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of heat transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ejaz, Faizan</au><au>Hwang, Leslie K</au><au>Kwon, Beomjin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heuristic Optimization of Ribbed Cooling Channels With Variable Length and Roughness</atitle><jtitle>Journal of heat transfer</jtitle><stitle>J. Heat Transfer</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>142</volume><issue>11</issue><issn>0022-1481</issn><eissn>1528-8943</eissn><abstract>This paper presents a heuristic optimization method for cooling channels with internal repeated-rib roughness. The method rapidly explores a design space to simultaneously optimize two geometric parameters, channel length, and rib roughness ratio. For a rapid and accurate optimization, the method combines a heuristic optimization technique, simulated annealing (SA), and numerically derived closed-form models of heat transfer and pressure drop. It is shown that approximately 1 million designs are evaluated within 6 s, resulting in optimal designs having minimal thermal resistance for given pressure thresholds. Closed-form correlations for developing and fully developed flow are derived by evaluating discrete design points using a finite volume model (FVM). The derived correlations predict the channel properties with acceptable ranges of mean absolute error (&lt;5% for Nusselt number and &lt; 15% for pressure drop) against the FVM. Optimal channel designs exhibit up to about 12 times greater performance factor compared to smooth channels, supporting the efficacy of optimization. The introduced method demonstrates the potential of rapid numerical optimization method in designing heat transfer devices with complex geometries.</abstract><pub>ASME</pub><doi>10.1115/1.4047835</doi></addata></record>
fulltext fulltext
identifier ISSN: 0022-1481
ispartof Journal of heat transfer, 2020-11, Vol.142 (11)
issn 0022-1481
1528-8943
language eng
recordid cdi_crossref_primary_10_1115_1_4047835
source ASME Transactions Journals (Current); Alma/SFX Local Collection
subjects Two-Phase Flow and Heat Transfer
title Heuristic Optimization of Ribbed Cooling Channels With Variable Length and Roughness
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T00%3A59%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-asme_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heuristic%20Optimization%20of%20Ribbed%20Cooling%20Channels%20With%20Variable%20Length%20and%20Roughness&rft.jtitle=Journal%20of%20heat%20transfer&rft.au=Ejaz,%20Faizan&rft.date=2020-11-01&rft.volume=142&rft.issue=11&rft.issn=0022-1481&rft.eissn=1528-8943&rft_id=info:doi/10.1115/1.4047835&rft_dat=%3Casme_cross%3E1085372%3C/asme_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true