Forced Oscillations of the Discrete Membrane Under Conditions of “Sonic Vacuum”

This study presents a new analytical model for nonlinear dynamics of a discrete rectangular membrane that is subjected to external harmonic force. It has recently been shown that the corresponding autonomous system admits a series of nonlinear normal modes. In this paper, we describe stationary and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied mechanics 2020-11, Vol.87 (11)
Hauptverfasser: Kevorkov, S. S, Koroleva, I. P, Smirnov, V. V, Manevitch, L. I
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page
container_title Journal of applied mechanics
container_volume 87
creator Kevorkov, S. S
Koroleva, I. P
Smirnov, V. V
Manevitch, L. I
description This study presents a new analytical model for nonlinear dynamics of a discrete rectangular membrane that is subjected to external harmonic force. It has recently been shown that the corresponding autonomous system admits a series of nonlinear normal modes. In this paper, we describe stationary and non-stationary dynamics on a single mode manifold. We suggest a simple formula for the amplitude-frequency response in both conservative and non-conservative cases and present an analytical expression (in parametric space) for thresholds for all possible bifurcations. Theoretical results obtained through asymptotic approach are confirmed by the experimental data. Experiments on the shaking table show that amplitude-frequency response to external force in a real system matches our theory. Substantial hysteresis is observed in the regimes with increasing and decreasing frequency of external force. The obtained results may be used in designing nonlinear energy sinks.
doi_str_mv 10.1115/1.4047812
format Article
fullrecord <record><control><sourceid>asme_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1115_1_4047812</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1085348</sourcerecordid><originalsourceid>FETCH-LOGICAL-a250t-7c4933270dcd91087aedb50958b710fc04ca1345877baf6abb9d4efb879aeedb3</originalsourceid><addsrcrecordid>eNo90L1OwzAcBHALgUQoDOwMXhlS_o7t2B5RoYBU1KGUNfJXRKomRnYysPVB4OX6JAS1Yrrlp9PpELomMCWE8DsyZcCEJMUJyggvZK6AlqcoAyhILhUtz9FFShsA4LJkGVrNQ7Te4WWyzXar-yZ0CYca9x8ePzTJRt97_OpbE3Xn8bpzPuJZ6FzzL_e771XoGovftR2Gdr_7uURntd4mf3XMCVrPH99mz_li-fQyu1_kuuDQ58IyRWkhwFmnCEihvTMcFJdGEKgtMKsJZVwKYXRdamOUY742UijtR0on6PbQa2NIKfq6-oxNq-NXRaD6e6Mi1fGN0d4crE6trzZhiN04bYSSUybpL3Z8XSs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Forced Oscillations of the Discrete Membrane Under Conditions of “Sonic Vacuum”</title><source>ASME Transactions Journals</source><source>Alma/SFX Local Collection</source><creator>Kevorkov, S. S ; Koroleva, I. P ; Smirnov, V. V ; Manevitch, L. I</creator><creatorcontrib>Kevorkov, S. S ; Koroleva, I. P ; Smirnov, V. V ; Manevitch, L. I</creatorcontrib><description>This study presents a new analytical model for nonlinear dynamics of a discrete rectangular membrane that is subjected to external harmonic force. It has recently been shown that the corresponding autonomous system admits a series of nonlinear normal modes. In this paper, we describe stationary and non-stationary dynamics on a single mode manifold. We suggest a simple formula for the amplitude-frequency response in both conservative and non-conservative cases and present an analytical expression (in parametric space) for thresholds for all possible bifurcations. Theoretical results obtained through asymptotic approach are confirmed by the experimental data. Experiments on the shaking table show that amplitude-frequency response to external force in a real system matches our theory. Substantial hysteresis is observed in the regimes with increasing and decreasing frequency of external force. The obtained results may be used in designing nonlinear energy sinks.</description><identifier>ISSN: 0021-8936</identifier><identifier>EISSN: 1528-9036</identifier><identifier>DOI: 10.1115/1.4047812</identifier><language>eng</language><publisher>ASME</publisher><ispartof>Journal of applied mechanics, 2020-11, Vol.87 (11)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a250t-7c4933270dcd91087aedb50958b710fc04ca1345877baf6abb9d4efb879aeedb3</citedby><cites>FETCH-LOGICAL-a250t-7c4933270dcd91087aedb50958b710fc04ca1345877baf6abb9d4efb879aeedb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924,38519</link.rule.ids></links><search><creatorcontrib>Kevorkov, S. S</creatorcontrib><creatorcontrib>Koroleva, I. P</creatorcontrib><creatorcontrib>Smirnov, V. V</creatorcontrib><creatorcontrib>Manevitch, L. I</creatorcontrib><title>Forced Oscillations of the Discrete Membrane Under Conditions of “Sonic Vacuum”</title><title>Journal of applied mechanics</title><addtitle>J. Appl. Mech</addtitle><description>This study presents a new analytical model for nonlinear dynamics of a discrete rectangular membrane that is subjected to external harmonic force. It has recently been shown that the corresponding autonomous system admits a series of nonlinear normal modes. In this paper, we describe stationary and non-stationary dynamics on a single mode manifold. We suggest a simple formula for the amplitude-frequency response in both conservative and non-conservative cases and present an analytical expression (in parametric space) for thresholds for all possible bifurcations. Theoretical results obtained through asymptotic approach are confirmed by the experimental data. Experiments on the shaking table show that amplitude-frequency response to external force in a real system matches our theory. Substantial hysteresis is observed in the regimes with increasing and decreasing frequency of external force. The obtained results may be used in designing nonlinear energy sinks.</description><issn>0021-8936</issn><issn>1528-9036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo90L1OwzAcBHALgUQoDOwMXhlS_o7t2B5RoYBU1KGUNfJXRKomRnYysPVB4OX6JAS1Yrrlp9PpELomMCWE8DsyZcCEJMUJyggvZK6AlqcoAyhILhUtz9FFShsA4LJkGVrNQ7Te4WWyzXar-yZ0CYca9x8ePzTJRt97_OpbE3Xn8bpzPuJZ6FzzL_e771XoGovftR2Gdr_7uURntd4mf3XMCVrPH99mz_li-fQyu1_kuuDQ58IyRWkhwFmnCEihvTMcFJdGEKgtMKsJZVwKYXRdamOUY742UijtR0on6PbQa2NIKfq6-oxNq-NXRaD6e6Mi1fGN0d4crE6trzZhiN04bYSSUybpL3Z8XSs</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Kevorkov, S. S</creator><creator>Koroleva, I. P</creator><creator>Smirnov, V. V</creator><creator>Manevitch, L. I</creator><general>ASME</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20201101</creationdate><title>Forced Oscillations of the Discrete Membrane Under Conditions of “Sonic Vacuum”</title><author>Kevorkov, S. S ; Koroleva, I. P ; Smirnov, V. V ; Manevitch, L. I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a250t-7c4933270dcd91087aedb50958b710fc04ca1345877baf6abb9d4efb879aeedb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kevorkov, S. S</creatorcontrib><creatorcontrib>Koroleva, I. P</creatorcontrib><creatorcontrib>Smirnov, V. V</creatorcontrib><creatorcontrib>Manevitch, L. I</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kevorkov, S. S</au><au>Koroleva, I. P</au><au>Smirnov, V. V</au><au>Manevitch, L. I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forced Oscillations of the Discrete Membrane Under Conditions of “Sonic Vacuum”</atitle><jtitle>Journal of applied mechanics</jtitle><stitle>J. Appl. Mech</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>87</volume><issue>11</issue><issn>0021-8936</issn><eissn>1528-9036</eissn><abstract>This study presents a new analytical model for nonlinear dynamics of a discrete rectangular membrane that is subjected to external harmonic force. It has recently been shown that the corresponding autonomous system admits a series of nonlinear normal modes. In this paper, we describe stationary and non-stationary dynamics on a single mode manifold. We suggest a simple formula for the amplitude-frequency response in both conservative and non-conservative cases and present an analytical expression (in parametric space) for thresholds for all possible bifurcations. Theoretical results obtained through asymptotic approach are confirmed by the experimental data. Experiments on the shaking table show that amplitude-frequency response to external force in a real system matches our theory. Substantial hysteresis is observed in the regimes with increasing and decreasing frequency of external force. The obtained results may be used in designing nonlinear energy sinks.</abstract><pub>ASME</pub><doi>10.1115/1.4047812</doi></addata></record>
fulltext fulltext
identifier ISSN: 0021-8936
ispartof Journal of applied mechanics, 2020-11, Vol.87 (11)
issn 0021-8936
1528-9036
language eng
recordid cdi_crossref_primary_10_1115_1_4047812
source ASME Transactions Journals; Alma/SFX Local Collection
title Forced Oscillations of the Discrete Membrane Under Conditions of “Sonic Vacuum”
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T17%3A41%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-asme_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forced%20Oscillations%20of%20the%20Discrete%20Membrane%20Under%20Conditions%20of%20%E2%80%9CSonic%20Vacuum%E2%80%9D&rft.jtitle=Journal%20of%20applied%20mechanics&rft.au=Kevorkov,%20S.%20S&rft.date=2020-11-01&rft.volume=87&rft.issue=11&rft.issn=0021-8936&rft.eissn=1528-9036&rft_id=info:doi/10.1115/1.4047812&rft_dat=%3Casme_cross%3E1085348%3C/asme_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true