Simultaneous Extraction of Multiple Parameters From a Transmit–Receive Eddy Current Probe Above a Layered Planar Conductive Structure
A validated analytical model of a transmit–receive coil pair situated above two parallel plates, separated by an air gap, was used as the basis for an inversion algorithm (IA) to extract probe liftoff, second layer plate resistivity, and plate-to-plate gap from multi-frequency eddy current data. The...
Gespeichert in:
Veröffentlicht in: | Journal of nondestructive evaluation, diagnostics and prognostics of engineering systems diagnostics and prognostics of engineering systems, 2020-11, Vol.3 (4) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Journal of nondestructive evaluation, diagnostics and prognostics of engineering systems |
container_volume | 3 |
creator | Luloff, Mark S Contant, Stephane Morelli, Jordan Krause, Thomas W |
description | A validated analytical model of a transmit–receive coil pair situated above two parallel plates, separated by an air gap, was used as the basis for an inversion algorithm (IA) to extract probe liftoff, second layer plate resistivity, and plate-to-plate gap from multi-frequency eddy current data. The IA was tested over a large range of first layer wall thickness (3.80–4.64 mm), second layer plate resistivity (1.7–174 µΩ cm), second layer wall thickness (1.20–4.85 mm), probe liftoff (2.8–7.9 mm), and plate-to-plate gap (0–13.3 mm). At nominal liftoff (2.8 mm), the IA achieved a gap measurement accuracy of ±0.7 mm and was able to return good estimates of the second layer resistivity within ±1 μΩ cm for low resistivity samples, but with decreasing accuracy for higher resistivities. When the gap was fixed, the IA was able to measure changes in probe liftoff (relative to nominal) to an accuracy of ±0.2 mm. The reported accuracy and a demonstration for the ability to accurately estimate parameters outside of the calibration range provide confidence in the potential utility of the algorithm. |
doi_str_mv | 10.1115/1.4047293 |
format | Article |
fullrecord | <record><control><sourceid>asme_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1115_1_4047293</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1083959</sourcerecordid><originalsourceid>FETCH-LOGICAL-a180t-21159244edafe3f36cd9afb7493a937c6a80b11b902c612a5155b9e317ac8ed93</originalsourceid><addsrcrecordid>eNo1kE9Lw0AQxYMoWGoP3j3s1UPq_sm_PZbQqlCx2HoOk2QCKUm2zG7E3rz5AfyGfhJXrKd58H7MzHtBcC34XAgR34l5xKNUanUWTGScylBlOjv_15qLy2Bm7Z5zLrRIpIwmwee27cfOwYBmtGz57ggq15qBmYY9eaM9dMg2QNCjQ7JsRaZnwHYEg-1b9_3x9YIVtm_IlnV9ZPlIhINjGzIlskVpvAFsDUckrNmmgwGI5WaoR3_Fe1tHXo2EV8FFA53F2WlOg9fVcpc_hOvn-8d8sQ5BZNyF0sfUMoqwhgZVo5Kq1tCUaaQVaJVWCWS8FKLUXFaJkBCLOC41KpFClWGt1TS4_dtbkbGWsCkO1PZAx0Lw4rfEQhSnEj1788eC7bHYm5EG_5oHM6VjrX4AOAFwCg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Simultaneous Extraction of Multiple Parameters From a Transmit–Receive Eddy Current Probe Above a Layered Planar Conductive Structure</title><source>ASME Transactions Journals (Current)</source><creator>Luloff, Mark S ; Contant, Stephane ; Morelli, Jordan ; Krause, Thomas W</creator><creatorcontrib>Luloff, Mark S ; Contant, Stephane ; Morelli, Jordan ; Krause, Thomas W</creatorcontrib><description>A validated analytical model of a transmit–receive coil pair situated above two parallel plates, separated by an air gap, was used as the basis for an inversion algorithm (IA) to extract probe liftoff, second layer plate resistivity, and plate-to-plate gap from multi-frequency eddy current data. The IA was tested over a large range of first layer wall thickness (3.80–4.64 mm), second layer plate resistivity (1.7–174 µΩ cm), second layer wall thickness (1.20–4.85 mm), probe liftoff (2.8–7.9 mm), and plate-to-plate gap (0–13.3 mm). At nominal liftoff (2.8 mm), the IA achieved a gap measurement accuracy of ±0.7 mm and was able to return good estimates of the second layer resistivity within ±1 μΩ cm for low resistivity samples, but with decreasing accuracy for higher resistivities. When the gap was fixed, the IA was able to measure changes in probe liftoff (relative to nominal) to an accuracy of ±0.2 mm. The reported accuracy and a demonstration for the ability to accurately estimate parameters outside of the calibration range provide confidence in the potential utility of the algorithm.</description><identifier>ISSN: 2572-3901</identifier><identifier>EISSN: 2572-3898</identifier><identifier>DOI: 10.1115/1.4047293</identifier><language>eng</language><publisher>ASME</publisher><ispartof>Journal of nondestructive evaluation, diagnostics and prognostics of engineering systems, 2020-11, Vol.3 (4)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a180t-21159244edafe3f36cd9afb7493a937c6a80b11b902c612a5155b9e317ac8ed93</citedby><cites>FETCH-LOGICAL-a180t-21159244edafe3f36cd9afb7493a937c6a80b11b902c612a5155b9e317ac8ed93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,38520</link.rule.ids></links><search><creatorcontrib>Luloff, Mark S</creatorcontrib><creatorcontrib>Contant, Stephane</creatorcontrib><creatorcontrib>Morelli, Jordan</creatorcontrib><creatorcontrib>Krause, Thomas W</creatorcontrib><title>Simultaneous Extraction of Multiple Parameters From a Transmit–Receive Eddy Current Probe Above a Layered Planar Conductive Structure</title><title>Journal of nondestructive evaluation, diagnostics and prognostics of engineering systems</title><addtitle>ASME J Nondestructive Evaluation</addtitle><description>A validated analytical model of a transmit–receive coil pair situated above two parallel plates, separated by an air gap, was used as the basis for an inversion algorithm (IA) to extract probe liftoff, second layer plate resistivity, and plate-to-plate gap from multi-frequency eddy current data. The IA was tested over a large range of first layer wall thickness (3.80–4.64 mm), second layer plate resistivity (1.7–174 µΩ cm), second layer wall thickness (1.20–4.85 mm), probe liftoff (2.8–7.9 mm), and plate-to-plate gap (0–13.3 mm). At nominal liftoff (2.8 mm), the IA achieved a gap measurement accuracy of ±0.7 mm and was able to return good estimates of the second layer resistivity within ±1 μΩ cm for low resistivity samples, but with decreasing accuracy for higher resistivities. When the gap was fixed, the IA was able to measure changes in probe liftoff (relative to nominal) to an accuracy of ±0.2 mm. The reported accuracy and a demonstration for the ability to accurately estimate parameters outside of the calibration range provide confidence in the potential utility of the algorithm.</description><issn>2572-3901</issn><issn>2572-3898</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo1kE9Lw0AQxYMoWGoP3j3s1UPq_sm_PZbQqlCx2HoOk2QCKUm2zG7E3rz5AfyGfhJXrKd58H7MzHtBcC34XAgR34l5xKNUanUWTGScylBlOjv_15qLy2Bm7Z5zLrRIpIwmwee27cfOwYBmtGz57ggq15qBmYY9eaM9dMg2QNCjQ7JsRaZnwHYEg-1b9_3x9YIVtm_IlnV9ZPlIhINjGzIlskVpvAFsDUckrNmmgwGI5WaoR3_Fe1tHXo2EV8FFA53F2WlOg9fVcpc_hOvn-8d8sQ5BZNyF0sfUMoqwhgZVo5Kq1tCUaaQVaJVWCWS8FKLUXFaJkBCLOC41KpFClWGt1TS4_dtbkbGWsCkO1PZAx0Lw4rfEQhSnEj1788eC7bHYm5EG_5oHM6VjrX4AOAFwCg</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Luloff, Mark S</creator><creator>Contant, Stephane</creator><creator>Morelli, Jordan</creator><creator>Krause, Thomas W</creator><general>ASME</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20201101</creationdate><title>Simultaneous Extraction of Multiple Parameters From a Transmit–Receive Eddy Current Probe Above a Layered Planar Conductive Structure</title><author>Luloff, Mark S ; Contant, Stephane ; Morelli, Jordan ; Krause, Thomas W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a180t-21159244edafe3f36cd9afb7493a937c6a80b11b902c612a5155b9e317ac8ed93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luloff, Mark S</creatorcontrib><creatorcontrib>Contant, Stephane</creatorcontrib><creatorcontrib>Morelli, Jordan</creatorcontrib><creatorcontrib>Krause, Thomas W</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of nondestructive evaluation, diagnostics and prognostics of engineering systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luloff, Mark S</au><au>Contant, Stephane</au><au>Morelli, Jordan</au><au>Krause, Thomas W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simultaneous Extraction of Multiple Parameters From a Transmit–Receive Eddy Current Probe Above a Layered Planar Conductive Structure</atitle><jtitle>Journal of nondestructive evaluation, diagnostics and prognostics of engineering systems</jtitle><stitle>ASME J Nondestructive Evaluation</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>3</volume><issue>4</issue><issn>2572-3901</issn><eissn>2572-3898</eissn><abstract>A validated analytical model of a transmit–receive coil pair situated above two parallel plates, separated by an air gap, was used as the basis for an inversion algorithm (IA) to extract probe liftoff, second layer plate resistivity, and plate-to-plate gap from multi-frequency eddy current data. The IA was tested over a large range of first layer wall thickness (3.80–4.64 mm), second layer plate resistivity (1.7–174 µΩ cm), second layer wall thickness (1.20–4.85 mm), probe liftoff (2.8–7.9 mm), and plate-to-plate gap (0–13.3 mm). At nominal liftoff (2.8 mm), the IA achieved a gap measurement accuracy of ±0.7 mm and was able to return good estimates of the second layer resistivity within ±1 μΩ cm for low resistivity samples, but with decreasing accuracy for higher resistivities. When the gap was fixed, the IA was able to measure changes in probe liftoff (relative to nominal) to an accuracy of ±0.2 mm. The reported accuracy and a demonstration for the ability to accurately estimate parameters outside of the calibration range provide confidence in the potential utility of the algorithm.</abstract><pub>ASME</pub><doi>10.1115/1.4047293</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2572-3901 |
ispartof | Journal of nondestructive evaluation, diagnostics and prognostics of engineering systems, 2020-11, Vol.3 (4) |
issn | 2572-3901 2572-3898 |
language | eng |
recordid | cdi_crossref_primary_10_1115_1_4047293 |
source | ASME Transactions Journals (Current) |
title | Simultaneous Extraction of Multiple Parameters From a Transmit–Receive Eddy Current Probe Above a Layered Planar Conductive Structure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A35%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-asme_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simultaneous%20Extraction%20of%20Multiple%20Parameters%20From%20a%20Transmit%E2%80%93Receive%20Eddy%20Current%20Probe%20Above%20a%20Layered%20Planar%20Conductive%20Structure&rft.jtitle=Journal%20of%20nondestructive%20evaluation,%20diagnostics%20and%20prognostics%20of%20engineering%20systems&rft.au=Luloff,%20Mark%20S&rft.date=2020-11-01&rft.volume=3&rft.issue=4&rft.issn=2572-3901&rft.eissn=2572-3898&rft_id=info:doi/10.1115/1.4047293&rft_dat=%3Casme_cross%3E1083959%3C/asme_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |