Experimental Identification of Steady-State Turbomachinery Heat Transfer Using Nondimensional Groups

Diabatic performance modeling is a prerequisite for engine condition monitoring based on nonsteady-state data points (e.g., Putz et al. 2017, “Jet Engine Gas Path Analysis Based on Takeoff Performance Snapshots,” ASME J. Eng. Gas Turbines Power, 139(11), p. 111201.). The importance of diabatic effec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of heat transfer 2020-06, Vol.142 (6)
Hauptverfasser: Baumann, Markus, Koch, Christian, Staudacher, Stephan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Diabatic performance modeling is a prerequisite for engine condition monitoring based on nonsteady-state data points (e.g., Putz et al. 2017, “Jet Engine Gas Path Analysis Based on Takeoff Performance Snapshots,” ASME J. Eng. Gas Turbines Power, 139(11), p. 111201.). The importance of diabatic effects increases with decreasing engine size. Steady-state diabatic modeling of turbomachinery components is presented using nondimensional parameters derived from a dimensional analysis. The resulting heat transfer maps are approximated using the analytic solution for a pipe. Experimental identification of the maps requires the measurement of casing and gas path temperatures. This approach is demonstrated successfully using a small turboshaft engine as a test vehicle. A limited amount of measurements was needed to generate a steady-state heat transfer map which is valid for a wide range of operating points.
ISSN:0022-1481
1528-8943
DOI:10.1115/1.4046794