A Novel Activated Carbon Enabled Steam Generation System Under Simulated Solar Light
Studies on CNT, Au, and Ag solar enabled steam generation with potential application in water purification, distillation, and sterilization of medical equipment are ongoing. The key challenge with these nanoparticles is the cost of production hence limiting its full application for clean water produ...
Gespeichert in:
Veröffentlicht in: | Journal of electronic packaging 2019-09, Vol.141 (3) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Journal of electronic packaging |
container_volume | 141 |
creator | Mishra, Ashreet Nnanna, Agbai Agwu George |
description | Studies on CNT, Au, and Ag solar enabled steam generation with potential application in water purification, distillation, and sterilization of medical equipment are ongoing. The key challenge with these nanoparticles is the cost of production hence limiting its full application for clean water production. This work for the first time, reports on activated carbon enabled steam generation hence addressing the cost limitations of metallic nanoparticles. Activated carbon has high solar absorptivity at various wavelengths of visible light under low concentration. Experiments were carried out using activated carbon and CNT nanofluids and polyurethane membrane with immobilized activated carbon and CNT. A simulated solar light of 1 KW ~1 Sun was used. The rate of evaporation, temporal, and spatial evolution of bulk temperature in the water were monitored automatically and recorded for further data reductions. Parametric studies of the effect of nanoparticle concentration, water quality, and salinity were performed. Experimental evidence showed that activated carbon has potential in water purification. We reported for the first time that optimal activated carbon concentration for maximum steam generation is 60 % vol. We also obtained a 160 % increase in steam production rate at 60 % concentration of activated carbon when compared with D.I water. |
doi_str_mv | 10.1115/1.4044716 |
format | Article |
fullrecord | <record><control><sourceid>asme_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1115_1_4044716</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>975403</sourcerecordid><originalsourceid>FETCH-LOGICAL-a209t-388220df82e4f3b324676dca62b560bb893c9136b9b42a50d0a059b56a0001b73</originalsourceid><addsrcrecordid>eNotUD1PwzAUtBBIlMLAzOKVIeX5I048VlUpSBEMaWfrOXEgVT6Q41bqv8fQTu9Od_d0OkIeGSwYY-kLW0iQMmPqisxYyvNER3odMUiRZELnt-RumvYATAipZmS7pB_j0XV0WYX2iMHVdIXejgNdD2i7SMvgsKcbNziPoY1CeZqC6-luqJ2nZdsfuv9YOXboadF-fYd7ctNgN7mHy52T3et6u3pLis_N-2pZJMhBh0TkOedQNzl3shFWcKkyVVeouE0VWJtrUWkmlNVWckyhBoRURw0h9reZmJPn89_Kj9PkXWN-fNujPxkG5m8Ow8xljuh9Ontx6p3Zjwc_xGpGZ6kEIX4BKW9Zcw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Novel Activated Carbon Enabled Steam Generation System Under Simulated Solar Light</title><source>ASME Transactions Journals (Current)</source><source>Alma/SFX Local Collection</source><creator>Mishra, Ashreet ; Nnanna, Agbai Agwu George</creator><creatorcontrib>Mishra, Ashreet ; Nnanna, Agbai Agwu George</creatorcontrib><description>Studies on CNT, Au, and Ag solar enabled steam generation with potential application in water purification, distillation, and sterilization of medical equipment are ongoing. The key challenge with these nanoparticles is the cost of production hence limiting its full application for clean water production. This work for the first time, reports on activated carbon enabled steam generation hence addressing the cost limitations of metallic nanoparticles. Activated carbon has high solar absorptivity at various wavelengths of visible light under low concentration. Experiments were carried out using activated carbon and CNT nanofluids and polyurethane membrane with immobilized activated carbon and CNT. A simulated solar light of 1 KW ~1 Sun was used. The rate of evaporation, temporal, and spatial evolution of bulk temperature in the water were monitored automatically and recorded for further data reductions. Parametric studies of the effect of nanoparticle concentration, water quality, and salinity were performed. Experimental evidence showed that activated carbon has potential in water purification. We reported for the first time that optimal activated carbon concentration for maximum steam generation is 60 % vol. We also obtained a 160 % increase in steam production rate at 60 % concentration of activated carbon when compared with D.I water.</description><identifier>ISSN: 1043-7398</identifier><identifier>EISSN: 1528-9044</identifier><identifier>DOI: 10.1115/1.4044716</identifier><language>eng</language><publisher>ASME</publisher><ispartof>Journal of electronic packaging, 2019-09, Vol.141 (3)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a209t-388220df82e4f3b324676dca62b560bb893c9136b9b42a50d0a059b56a0001b73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,38520</link.rule.ids></links><search><creatorcontrib>Mishra, Ashreet</creatorcontrib><creatorcontrib>Nnanna, Agbai Agwu George</creatorcontrib><title>A Novel Activated Carbon Enabled Steam Generation System Under Simulated Solar Light</title><title>Journal of electronic packaging</title><addtitle>J. Electron. Packag</addtitle><description>Studies on CNT, Au, and Ag solar enabled steam generation with potential application in water purification, distillation, and sterilization of medical equipment are ongoing. The key challenge with these nanoparticles is the cost of production hence limiting its full application for clean water production. This work for the first time, reports on activated carbon enabled steam generation hence addressing the cost limitations of metallic nanoparticles. Activated carbon has high solar absorptivity at various wavelengths of visible light under low concentration. Experiments were carried out using activated carbon and CNT nanofluids and polyurethane membrane with immobilized activated carbon and CNT. A simulated solar light of 1 KW ~1 Sun was used. The rate of evaporation, temporal, and spatial evolution of bulk temperature in the water were monitored automatically and recorded for further data reductions. Parametric studies of the effect of nanoparticle concentration, water quality, and salinity were performed. Experimental evidence showed that activated carbon has potential in water purification. We reported for the first time that optimal activated carbon concentration for maximum steam generation is 60 % vol. We also obtained a 160 % increase in steam production rate at 60 % concentration of activated carbon when compared with D.I water.</description><issn>1043-7398</issn><issn>1528-9044</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNotUD1PwzAUtBBIlMLAzOKVIeX5I048VlUpSBEMaWfrOXEgVT6Q41bqv8fQTu9Od_d0OkIeGSwYY-kLW0iQMmPqisxYyvNER3odMUiRZELnt-RumvYATAipZmS7pB_j0XV0WYX2iMHVdIXejgNdD2i7SMvgsKcbNziPoY1CeZqC6-luqJ2nZdsfuv9YOXboadF-fYd7ctNgN7mHy52T3et6u3pLis_N-2pZJMhBh0TkOedQNzl3shFWcKkyVVeouE0VWJtrUWkmlNVWckyhBoRURw0h9reZmJPn89_Kj9PkXWN-fNujPxkG5m8Ow8xljuh9Ontx6p3Zjwc_xGpGZ6kEIX4BKW9Zcw</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Mishra, Ashreet</creator><creator>Nnanna, Agbai Agwu George</creator><general>ASME</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190901</creationdate><title>A Novel Activated Carbon Enabled Steam Generation System Under Simulated Solar Light</title><author>Mishra, Ashreet ; Nnanna, Agbai Agwu George</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a209t-388220df82e4f3b324676dca62b560bb893c9136b9b42a50d0a059b56a0001b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mishra, Ashreet</creatorcontrib><creatorcontrib>Nnanna, Agbai Agwu George</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of electronic packaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mishra, Ashreet</au><au>Nnanna, Agbai Agwu George</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Activated Carbon Enabled Steam Generation System Under Simulated Solar Light</atitle><jtitle>Journal of electronic packaging</jtitle><stitle>J. Electron. Packag</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>141</volume><issue>3</issue><issn>1043-7398</issn><eissn>1528-9044</eissn><abstract>Studies on CNT, Au, and Ag solar enabled steam generation with potential application in water purification, distillation, and sterilization of medical equipment are ongoing. The key challenge with these nanoparticles is the cost of production hence limiting its full application for clean water production. This work for the first time, reports on activated carbon enabled steam generation hence addressing the cost limitations of metallic nanoparticles. Activated carbon has high solar absorptivity at various wavelengths of visible light under low concentration. Experiments were carried out using activated carbon and CNT nanofluids and polyurethane membrane with immobilized activated carbon and CNT. A simulated solar light of 1 KW ~1 Sun was used. The rate of evaporation, temporal, and spatial evolution of bulk temperature in the water were monitored automatically and recorded for further data reductions. Parametric studies of the effect of nanoparticle concentration, water quality, and salinity were performed. Experimental evidence showed that activated carbon has potential in water purification. We reported for the first time that optimal activated carbon concentration for maximum steam generation is 60 % vol. We also obtained a 160 % increase in steam production rate at 60 % concentration of activated carbon when compared with D.I water.</abstract><pub>ASME</pub><doi>10.1115/1.4044716</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1043-7398 |
ispartof | Journal of electronic packaging, 2019-09, Vol.141 (3) |
issn | 1043-7398 1528-9044 |
language | eng |
recordid | cdi_crossref_primary_10_1115_1_4044716 |
source | ASME Transactions Journals (Current); Alma/SFX Local Collection |
title | A Novel Activated Carbon Enabled Steam Generation System Under Simulated Solar Light |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A51%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-asme_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Activated%20Carbon%20Enabled%20Steam%20Generation%20System%20Under%20Simulated%20Solar%20Light&rft.jtitle=Journal%20of%20electronic%20packaging&rft.au=Mishra,%20Ashreet&rft.date=2019-09-01&rft.volume=141&rft.issue=3&rft.issn=1043-7398&rft.eissn=1528-9044&rft_id=info:doi/10.1115/1.4044716&rft_dat=%3Casme_cross%3E975403%3C/asme_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |