Simultaneous Shape and Topology Optimization of Planar Linkage Mechanisms Based on the Spring-Connected Rigid Block Model

Using the topology optimization can be an effective means of synthesizing planar rigid-body linkage mechanisms to generate desired motion, as it does not require a baseline mechanism for a specific topology. While most earlier studies were mainly concerned with the formulation and implementation of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mechanical design (1990) 2020-01, Vol.142 (1), Article 011401
Hauptverfasser: Yu, Jeonghan, Han, Sang Min, Kim, Yoon Young
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Journal of mechanical design (1990)
container_volume 142
creator Yu, Jeonghan
Han, Sang Min
Kim, Yoon Young
description Using the topology optimization can be an effective means of synthesizing planar rigid-body linkage mechanisms to generate desired motion, as it does not require a baseline mechanism for a specific topology. While most earlier studies were mainly concerned with the formulation and implementation of topology optimization-based synthesis in a fixed grid, this study aims to realize the simultaneous shape and topology optimization of planar linkage mechanisms using a low-resolution spring-connected rigid block model. Here, we demonstrate the effectiveness of simultaneous optimization over a higher-resolution fixed-grid rigid block-based topology optimization process. When shape optimization to change the block shapes is combined with topology optimization to synthesize the mechanism, the use of low-resolution discretized models improves the computation efficiency considerably and helps to yield compact mechanisms with less complexity, making them more amenable to fabrication. After verifying the effectiveness of the simultaneous shape and topology optimization process with several benchmark problems, we apply the method to synthesize a mechanism which guides a planar version of a human's gait trajectory.
doi_str_mv 10.1115/1.4044327
format Article
fullrecord <record><control><sourceid>asme_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1115_1_4044327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>955326</sourcerecordid><originalsourceid>FETCH-LOGICAL-a315t-7288f5dc6b63c54588eb950235efe8a6024690c1292e1dc80a972a3cc56b3d983</originalsourceid><addsrcrecordid>eNqNkE1Lw0AQhoMoWKsHz172KpK6H9lkc7TBL2ip2HoOm80k3TbZLdkEqb_erRXPnuZleN5heILgmuAJIYTfk0mEo4jR5CQYEU5FmGJMTn3GHIc4Suh5cOHcxi-JiPgo2C91OzS9NGAHh5ZruQMkTYlWdmcbW-_RYtfrVn_JXluDbIXeGmlkh2babGUNaA5qLY12rUNT6aBEnurXgJa7Tps6zKwxoHq_f9e1LtG0sWqL5raE5jI4q2Tj4Op3joOPp8dV9hLOFs-v2cMslIzwPkyoEBUvVVzETPGICwFFyjFlHCoQMsY0ilOsCE0pkFIJLNOESqYUjwtWpoKNg9vjXdVZ5zqocv9aK7t9TnB-cJaT_NeZZ8WR_YTCVk5pMAr-eIwxp5zxROBDzHT_YyWzg-l99e7_VU_fHGnpWsg3duiMd5CnnDMas2_zjoh6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Simultaneous Shape and Topology Optimization of Planar Linkage Mechanisms Based on the Spring-Connected Rigid Block Model</title><source>ASME Transactions Journals (Current)</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Alma/SFX Local Collection</source><creator>Yu, Jeonghan ; Han, Sang Min ; Kim, Yoon Young</creator><creatorcontrib>Yu, Jeonghan ; Han, Sang Min ; Kim, Yoon Young</creatorcontrib><description>Using the topology optimization can be an effective means of synthesizing planar rigid-body linkage mechanisms to generate desired motion, as it does not require a baseline mechanism for a specific topology. While most earlier studies were mainly concerned with the formulation and implementation of topology optimization-based synthesis in a fixed grid, this study aims to realize the simultaneous shape and topology optimization of planar linkage mechanisms using a low-resolution spring-connected rigid block model. Here, we demonstrate the effectiveness of simultaneous optimization over a higher-resolution fixed-grid rigid block-based topology optimization process. When shape optimization to change the block shapes is combined with topology optimization to synthesize the mechanism, the use of low-resolution discretized models improves the computation efficiency considerably and helps to yield compact mechanisms with less complexity, making them more amenable to fabrication. After verifying the effectiveness of the simultaneous shape and topology optimization process with several benchmark problems, we apply the method to synthesize a mechanism which guides a planar version of a human's gait trajectory.</description><identifier>ISSN: 1050-0472</identifier><identifier>EISSN: 1528-9001</identifier><identifier>DOI: 10.1115/1.4044327</identifier><language>eng</language><publisher>NEW YORK: ASME</publisher><subject>Design Automation ; Engineering ; Engineering, Mechanical ; Science &amp; Technology ; Technology</subject><ispartof>Journal of mechanical design (1990), 2020-01, Vol.142 (1), Article 011401</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>15</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000525357800005</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-a315t-7288f5dc6b63c54588eb950235efe8a6024690c1292e1dc80a972a3cc56b3d983</citedby><cites>FETCH-LOGICAL-a315t-7288f5dc6b63c54588eb950235efe8a6024690c1292e1dc80a972a3cc56b3d983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27928,27929,28252,38524</link.rule.ids></links><search><creatorcontrib>Yu, Jeonghan</creatorcontrib><creatorcontrib>Han, Sang Min</creatorcontrib><creatorcontrib>Kim, Yoon Young</creatorcontrib><title>Simultaneous Shape and Topology Optimization of Planar Linkage Mechanisms Based on the Spring-Connected Rigid Block Model</title><title>Journal of mechanical design (1990)</title><addtitle>J. Mech. Des</addtitle><addtitle>J MECH DESIGN</addtitle><description>Using the topology optimization can be an effective means of synthesizing planar rigid-body linkage mechanisms to generate desired motion, as it does not require a baseline mechanism for a specific topology. While most earlier studies were mainly concerned with the formulation and implementation of topology optimization-based synthesis in a fixed grid, this study aims to realize the simultaneous shape and topology optimization of planar linkage mechanisms using a low-resolution spring-connected rigid block model. Here, we demonstrate the effectiveness of simultaneous optimization over a higher-resolution fixed-grid rigid block-based topology optimization process. When shape optimization to change the block shapes is combined with topology optimization to synthesize the mechanism, the use of low-resolution discretized models improves the computation efficiency considerably and helps to yield compact mechanisms with less complexity, making them more amenable to fabrication. After verifying the effectiveness of the simultaneous shape and topology optimization process with several benchmark problems, we apply the method to synthesize a mechanism which guides a planar version of a human's gait trajectory.</description><subject>Design Automation</subject><subject>Engineering</subject><subject>Engineering, Mechanical</subject><subject>Science &amp; Technology</subject><subject>Technology</subject><issn>1050-0472</issn><issn>1528-9001</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkE1Lw0AQhoMoWKsHz172KpK6H9lkc7TBL2ip2HoOm80k3TbZLdkEqb_erRXPnuZleN5heILgmuAJIYTfk0mEo4jR5CQYEU5FmGJMTn3GHIc4Suh5cOHcxi-JiPgo2C91OzS9NGAHh5ZruQMkTYlWdmcbW-_RYtfrVn_JXluDbIXeGmlkh2babGUNaA5qLY12rUNT6aBEnurXgJa7Tps6zKwxoHq_f9e1LtG0sWqL5raE5jI4q2Tj4Op3joOPp8dV9hLOFs-v2cMslIzwPkyoEBUvVVzETPGICwFFyjFlHCoQMsY0ilOsCE0pkFIJLNOESqYUjwtWpoKNg9vjXdVZ5zqocv9aK7t9TnB-cJaT_NeZZ8WR_YTCVk5pMAr-eIwxp5zxROBDzHT_YyWzg-l99e7_VU_fHGnpWsg3duiMd5CnnDMas2_zjoh6</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Yu, Jeonghan</creator><creator>Han, Sang Min</creator><creator>Kim, Yoon Young</creator><general>ASME</general><general>Asme</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200101</creationdate><title>Simultaneous Shape and Topology Optimization of Planar Linkage Mechanisms Based on the Spring-Connected Rigid Block Model</title><author>Yu, Jeonghan ; Han, Sang Min ; Kim, Yoon Young</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a315t-7288f5dc6b63c54588eb950235efe8a6024690c1292e1dc80a972a3cc56b3d983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Design Automation</topic><topic>Engineering</topic><topic>Engineering, Mechanical</topic><topic>Science &amp; Technology</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Jeonghan</creatorcontrib><creatorcontrib>Han, Sang Min</creatorcontrib><creatorcontrib>Kim, Yoon Young</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><jtitle>Journal of mechanical design (1990)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Jeonghan</au><au>Han, Sang Min</au><au>Kim, Yoon Young</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simultaneous Shape and Topology Optimization of Planar Linkage Mechanisms Based on the Spring-Connected Rigid Block Model</atitle><jtitle>Journal of mechanical design (1990)</jtitle><stitle>J. Mech. Des</stitle><stitle>J MECH DESIGN</stitle><date>2020-01-01</date><risdate>2020</risdate><volume>142</volume><issue>1</issue><artnum>011401</artnum><issn>1050-0472</issn><eissn>1528-9001</eissn><abstract>Using the topology optimization can be an effective means of synthesizing planar rigid-body linkage mechanisms to generate desired motion, as it does not require a baseline mechanism for a specific topology. While most earlier studies were mainly concerned with the formulation and implementation of topology optimization-based synthesis in a fixed grid, this study aims to realize the simultaneous shape and topology optimization of planar linkage mechanisms using a low-resolution spring-connected rigid block model. Here, we demonstrate the effectiveness of simultaneous optimization over a higher-resolution fixed-grid rigid block-based topology optimization process. When shape optimization to change the block shapes is combined with topology optimization to synthesize the mechanism, the use of low-resolution discretized models improves the computation efficiency considerably and helps to yield compact mechanisms with less complexity, making them more amenable to fabrication. After verifying the effectiveness of the simultaneous shape and topology optimization process with several benchmark problems, we apply the method to synthesize a mechanism which guides a planar version of a human's gait trajectory.</abstract><cop>NEW YORK</cop><pub>ASME</pub><doi>10.1115/1.4044327</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1050-0472
ispartof Journal of mechanical design (1990), 2020-01, Vol.142 (1), Article 011401
issn 1050-0472
1528-9001
language eng
recordid cdi_crossref_primary_10_1115_1_4044327
source ASME Transactions Journals (Current); Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Alma/SFX Local Collection
subjects Design Automation
Engineering
Engineering, Mechanical
Science & Technology
Technology
title Simultaneous Shape and Topology Optimization of Planar Linkage Mechanisms Based on the Spring-Connected Rigid Block Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T18%3A16%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-asme_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simultaneous%20Shape%20and%20Topology%20Optimization%20of%20Planar%20Linkage%20Mechanisms%20Based%20on%20the%20Spring-Connected%20Rigid%20Block%20Model&rft.jtitle=Journal%20of%20mechanical%20design%20(1990)&rft.au=Yu,%20Jeonghan&rft.date=2020-01-01&rft.volume=142&rft.issue=1&rft.artnum=011401&rft.issn=1050-0472&rft.eissn=1528-9001&rft_id=info:doi/10.1115/1.4044327&rft_dat=%3Casme_cross%3E955326%3C/asme_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true