Chaotic and Hyperchaotic Dynamics of a Modified Murali–Lakshmanan–Chua Circuit

The present study uncovers the hyperchaotic dynamical behavior of the famous Murali-Lakshmanan-Chua (MLC) circuit, when suitably modified. In the conventional MLC oscillator, an inductor is introduced in parallel between the nonlinear element and the capacitor. Many novel and interesting dynamical b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and nonlinear dynamics 2019-05, Vol.14 (5)
Hauptverfasser: Manimehan, I, Paul Asir, M, Philominathan, P
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Journal of computational and nonlinear dynamics
container_volume 14
creator Manimehan, I
Paul Asir, M
Philominathan, P
description The present study uncovers the hyperchaotic dynamical behavior of the famous Murali-Lakshmanan-Chua (MLC) circuit, when suitably modified. In the conventional MLC oscillator, an inductor is introduced in parallel between the nonlinear element and the capacitor. Many novel and interesting dynamical behaviors such as reverse period-3 doubling, torus breakdown to chaos and hyperchaos, etc., were observed. Characterization techniques includes spectrum of Lyapunov exponents, one parameter bifurcation diagram, recurrence quantification analysis, correlation dimension, etc., were employed to analyze the different dynamical regimes. Explicit analytical solution of the model is derived and the results are corroborated with the numerical outcomes.
doi_str_mv 10.1115/1.4042692
format Article
fullrecord <record><control><sourceid>asme_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1115_1_4042692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>367778</sourcerecordid><originalsourceid>FETCH-LOGICAL-a249t-938dc661c186f4b0b7e18f5bbd4448c7a06c20912c6d9c1a5107c925fb90f6453</originalsourceid><addsrcrecordid>eNo9UL1OwzAYtBBIlMLAzOKVIcWfYzvxiMJPkVIhIZitL06sujRJZSdDN96BN-RJCGrFdD86nU5HyDWwBQDIO1gIJrjS_ITMQEqZgODp6T8HeU4uYtwwJoTO5Yy8FWvsB28pdjVd7ndNsEfjYd9h622kvaNIV33tnW9quhoDbv3P13eJn3HdYofdJIr1iLTwwY5-uCRnDrexuTrinHw8Pb4Xy6R8fX4p7ssEudBDotO8tkqBhVw5UbEqayB3sqpqIURuM2TKcqaBW1VrCyiBZVZz6SrNnBIynZPbQ68NfYyhcWYXfIthb4CZvzMMmOMZU_bmkMXYNmbTj6GbpplUZVmWp795GVue</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Chaotic and Hyperchaotic Dynamics of a Modified Murali–Lakshmanan–Chua Circuit</title><source>ASME_美国机械工程师学会现刊</source><source>Alma/SFX Local Collection</source><creator>Manimehan, I ; Paul Asir, M ; Philominathan, P</creator><creatorcontrib>Manimehan, I ; Paul Asir, M ; Philominathan, P</creatorcontrib><description>The present study uncovers the hyperchaotic dynamical behavior of the famous Murali-Lakshmanan-Chua (MLC) circuit, when suitably modified. In the conventional MLC oscillator, an inductor is introduced in parallel between the nonlinear element and the capacitor. Many novel and interesting dynamical behaviors such as reverse period-3 doubling, torus breakdown to chaos and hyperchaos, etc., were observed. Characterization techniques includes spectrum of Lyapunov exponents, one parameter bifurcation diagram, recurrence quantification analysis, correlation dimension, etc., were employed to analyze the different dynamical regimes. Explicit analytical solution of the model is derived and the results are corroborated with the numerical outcomes.</description><identifier>ISSN: 1555-1415</identifier><identifier>EISSN: 1555-1423</identifier><identifier>DOI: 10.1115/1.4042692</identifier><language>eng</language><publisher>ASME</publisher><ispartof>Journal of computational and nonlinear dynamics, 2019-05, Vol.14 (5)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a249t-938dc661c186f4b0b7e18f5bbd4448c7a06c20912c6d9c1a5107c925fb90f6453</citedby><cites>FETCH-LOGICAL-a249t-938dc661c186f4b0b7e18f5bbd4448c7a06c20912c6d9c1a5107c925fb90f6453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,38520</link.rule.ids></links><search><creatorcontrib>Manimehan, I</creatorcontrib><creatorcontrib>Paul Asir, M</creatorcontrib><creatorcontrib>Philominathan, P</creatorcontrib><title>Chaotic and Hyperchaotic Dynamics of a Modified Murali–Lakshmanan–Chua Circuit</title><title>Journal of computational and nonlinear dynamics</title><addtitle>J. Comput. Nonlinear Dynam</addtitle><description>The present study uncovers the hyperchaotic dynamical behavior of the famous Murali-Lakshmanan-Chua (MLC) circuit, when suitably modified. In the conventional MLC oscillator, an inductor is introduced in parallel between the nonlinear element and the capacitor. Many novel and interesting dynamical behaviors such as reverse period-3 doubling, torus breakdown to chaos and hyperchaos, etc., were observed. Characterization techniques includes spectrum of Lyapunov exponents, one parameter bifurcation diagram, recurrence quantification analysis, correlation dimension, etc., were employed to analyze the different dynamical regimes. Explicit analytical solution of the model is derived and the results are corroborated with the numerical outcomes.</description><issn>1555-1415</issn><issn>1555-1423</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9UL1OwzAYtBBIlMLAzOKVIcWfYzvxiMJPkVIhIZitL06sujRJZSdDN96BN-RJCGrFdD86nU5HyDWwBQDIO1gIJrjS_ITMQEqZgODp6T8HeU4uYtwwJoTO5Yy8FWvsB28pdjVd7ndNsEfjYd9h622kvaNIV33tnW9quhoDbv3P13eJn3HdYofdJIr1iLTwwY5-uCRnDrexuTrinHw8Pb4Xy6R8fX4p7ssEudBDotO8tkqBhVw5UbEqayB3sqpqIURuM2TKcqaBW1VrCyiBZVZz6SrNnBIynZPbQ68NfYyhcWYXfIthb4CZvzMMmOMZU_bmkMXYNmbTj6GbpplUZVmWp795GVue</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Manimehan, I</creator><creator>Paul Asir, M</creator><creator>Philominathan, P</creator><general>ASME</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190501</creationdate><title>Chaotic and Hyperchaotic Dynamics of a Modified Murali–Lakshmanan–Chua Circuit</title><author>Manimehan, I ; Paul Asir, M ; Philominathan, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a249t-938dc661c186f4b0b7e18f5bbd4448c7a06c20912c6d9c1a5107c925fb90f6453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manimehan, I</creatorcontrib><creatorcontrib>Paul Asir, M</creatorcontrib><creatorcontrib>Philominathan, P</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of computational and nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Manimehan, I</au><au>Paul Asir, M</au><au>Philominathan, P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chaotic and Hyperchaotic Dynamics of a Modified Murali–Lakshmanan–Chua Circuit</atitle><jtitle>Journal of computational and nonlinear dynamics</jtitle><stitle>J. Comput. Nonlinear Dynam</stitle><date>2019-05-01</date><risdate>2019</risdate><volume>14</volume><issue>5</issue><issn>1555-1415</issn><eissn>1555-1423</eissn><abstract>The present study uncovers the hyperchaotic dynamical behavior of the famous Murali-Lakshmanan-Chua (MLC) circuit, when suitably modified. In the conventional MLC oscillator, an inductor is introduced in parallel between the nonlinear element and the capacitor. Many novel and interesting dynamical behaviors such as reverse period-3 doubling, torus breakdown to chaos and hyperchaos, etc., were observed. Characterization techniques includes spectrum of Lyapunov exponents, one parameter bifurcation diagram, recurrence quantification analysis, correlation dimension, etc., were employed to analyze the different dynamical regimes. Explicit analytical solution of the model is derived and the results are corroborated with the numerical outcomes.</abstract><pub>ASME</pub><doi>10.1115/1.4042692</doi></addata></record>
fulltext fulltext
identifier ISSN: 1555-1415
ispartof Journal of computational and nonlinear dynamics, 2019-05, Vol.14 (5)
issn 1555-1415
1555-1423
language eng
recordid cdi_crossref_primary_10_1115_1_4042692
source ASME_美国机械工程师学会现刊; Alma/SFX Local Collection
title Chaotic and Hyperchaotic Dynamics of a Modified Murali–Lakshmanan–Chua Circuit
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T21%3A19%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-asme_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chaotic%20and%20Hyperchaotic%20Dynamics%20of%20a%20Modified%20Murali%E2%80%93Lakshmanan%E2%80%93Chua%20Circuit&rft.jtitle=Journal%20of%20computational%20and%20nonlinear%20dynamics&rft.au=Manimehan,%20I&rft.date=2019-05-01&rft.volume=14&rft.issue=5&rft.issn=1555-1415&rft.eissn=1555-1423&rft_id=info:doi/10.1115/1.4042692&rft_dat=%3Casme_cross%3E367778%3C/asme_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true