Chaotic and Hyperchaotic Dynamics of a Modified Murali–Lakshmanan–Chua Circuit
The present study uncovers the hyperchaotic dynamical behavior of the famous Murali-Lakshmanan-Chua (MLC) circuit, when suitably modified. In the conventional MLC oscillator, an inductor is introduced in parallel between the nonlinear element and the capacitor. Many novel and interesting dynamical b...
Gespeichert in:
Veröffentlicht in: | Journal of computational and nonlinear dynamics 2019-05, Vol.14 (5) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | |
container_title | Journal of computational and nonlinear dynamics |
container_volume | 14 |
creator | Manimehan, I Paul Asir, M Philominathan, P |
description | The present study uncovers the hyperchaotic dynamical behavior of the famous Murali-Lakshmanan-Chua (MLC) circuit, when suitably modified. In the conventional MLC oscillator, an inductor is introduced in parallel between the nonlinear element and the capacitor. Many novel and interesting dynamical behaviors such as reverse period-3 doubling, torus breakdown to chaos and hyperchaos, etc., were observed. Characterization techniques includes spectrum of Lyapunov exponents, one parameter bifurcation diagram, recurrence quantification analysis, correlation dimension, etc., were employed to analyze the different dynamical regimes. Explicit analytical solution of the model is derived and the results are corroborated with the numerical outcomes. |
doi_str_mv | 10.1115/1.4042692 |
format | Article |
fullrecord | <record><control><sourceid>asme_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1115_1_4042692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>367778</sourcerecordid><originalsourceid>FETCH-LOGICAL-a249t-938dc661c186f4b0b7e18f5bbd4448c7a06c20912c6d9c1a5107c925fb90f6453</originalsourceid><addsrcrecordid>eNo9UL1OwzAYtBBIlMLAzOKVIcWfYzvxiMJPkVIhIZitL06sujRJZSdDN96BN-RJCGrFdD86nU5HyDWwBQDIO1gIJrjS_ITMQEqZgODp6T8HeU4uYtwwJoTO5Yy8FWvsB28pdjVd7ndNsEfjYd9h622kvaNIV33tnW9quhoDbv3P13eJn3HdYofdJIr1iLTwwY5-uCRnDrexuTrinHw8Pb4Xy6R8fX4p7ssEudBDotO8tkqBhVw5UbEqayB3sqpqIURuM2TKcqaBW1VrCyiBZVZz6SrNnBIynZPbQ68NfYyhcWYXfIthb4CZvzMMmOMZU_bmkMXYNmbTj6GbpplUZVmWp795GVue</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Chaotic and Hyperchaotic Dynamics of a Modified Murali–Lakshmanan–Chua Circuit</title><source>ASME_美国机械工程师学会现刊</source><source>Alma/SFX Local Collection</source><creator>Manimehan, I ; Paul Asir, M ; Philominathan, P</creator><creatorcontrib>Manimehan, I ; Paul Asir, M ; Philominathan, P</creatorcontrib><description>The present study uncovers the hyperchaotic dynamical behavior of the famous Murali-Lakshmanan-Chua (MLC) circuit, when suitably modified. In the conventional MLC oscillator, an inductor is introduced in parallel between the nonlinear element and the capacitor. Many novel and interesting dynamical behaviors such as reverse period-3 doubling, torus breakdown to chaos and hyperchaos, etc., were observed. Characterization techniques includes spectrum of Lyapunov exponents, one parameter bifurcation diagram, recurrence quantification analysis, correlation dimension, etc., were employed to analyze the different dynamical regimes. Explicit analytical solution of the model is derived and the results are corroborated with the numerical outcomes.</description><identifier>ISSN: 1555-1415</identifier><identifier>EISSN: 1555-1423</identifier><identifier>DOI: 10.1115/1.4042692</identifier><language>eng</language><publisher>ASME</publisher><ispartof>Journal of computational and nonlinear dynamics, 2019-05, Vol.14 (5)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a249t-938dc661c186f4b0b7e18f5bbd4448c7a06c20912c6d9c1a5107c925fb90f6453</citedby><cites>FETCH-LOGICAL-a249t-938dc661c186f4b0b7e18f5bbd4448c7a06c20912c6d9c1a5107c925fb90f6453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,38520</link.rule.ids></links><search><creatorcontrib>Manimehan, I</creatorcontrib><creatorcontrib>Paul Asir, M</creatorcontrib><creatorcontrib>Philominathan, P</creatorcontrib><title>Chaotic and Hyperchaotic Dynamics of a Modified Murali–Lakshmanan–Chua Circuit</title><title>Journal of computational and nonlinear dynamics</title><addtitle>J. Comput. Nonlinear Dynam</addtitle><description>The present study uncovers the hyperchaotic dynamical behavior of the famous Murali-Lakshmanan-Chua (MLC) circuit, when suitably modified. In the conventional MLC oscillator, an inductor is introduced in parallel between the nonlinear element and the capacitor. Many novel and interesting dynamical behaviors such as reverse period-3 doubling, torus breakdown to chaos and hyperchaos, etc., were observed. Characterization techniques includes spectrum of Lyapunov exponents, one parameter bifurcation diagram, recurrence quantification analysis, correlation dimension, etc., were employed to analyze the different dynamical regimes. Explicit analytical solution of the model is derived and the results are corroborated with the numerical outcomes.</description><issn>1555-1415</issn><issn>1555-1423</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9UL1OwzAYtBBIlMLAzOKVIcWfYzvxiMJPkVIhIZitL06sujRJZSdDN96BN-RJCGrFdD86nU5HyDWwBQDIO1gIJrjS_ITMQEqZgODp6T8HeU4uYtwwJoTO5Yy8FWvsB28pdjVd7ndNsEfjYd9h622kvaNIV33tnW9quhoDbv3P13eJn3HdYofdJIr1iLTwwY5-uCRnDrexuTrinHw8Pb4Xy6R8fX4p7ssEudBDotO8tkqBhVw5UbEqayB3sqpqIURuM2TKcqaBW1VrCyiBZVZz6SrNnBIynZPbQ68NfYyhcWYXfIthb4CZvzMMmOMZU_bmkMXYNmbTj6GbpplUZVmWp795GVue</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Manimehan, I</creator><creator>Paul Asir, M</creator><creator>Philominathan, P</creator><general>ASME</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190501</creationdate><title>Chaotic and Hyperchaotic Dynamics of a Modified Murali–Lakshmanan–Chua Circuit</title><author>Manimehan, I ; Paul Asir, M ; Philominathan, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a249t-938dc661c186f4b0b7e18f5bbd4448c7a06c20912c6d9c1a5107c925fb90f6453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manimehan, I</creatorcontrib><creatorcontrib>Paul Asir, M</creatorcontrib><creatorcontrib>Philominathan, P</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of computational and nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Manimehan, I</au><au>Paul Asir, M</au><au>Philominathan, P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chaotic and Hyperchaotic Dynamics of a Modified Murali–Lakshmanan–Chua Circuit</atitle><jtitle>Journal of computational and nonlinear dynamics</jtitle><stitle>J. Comput. Nonlinear Dynam</stitle><date>2019-05-01</date><risdate>2019</risdate><volume>14</volume><issue>5</issue><issn>1555-1415</issn><eissn>1555-1423</eissn><abstract>The present study uncovers the hyperchaotic dynamical behavior of the famous Murali-Lakshmanan-Chua (MLC) circuit, when suitably modified. In the conventional MLC oscillator, an inductor is introduced in parallel between the nonlinear element and the capacitor. Many novel and interesting dynamical behaviors such as reverse period-3 doubling, torus breakdown to chaos and hyperchaos, etc., were observed. Characterization techniques includes spectrum of Lyapunov exponents, one parameter bifurcation diagram, recurrence quantification analysis, correlation dimension, etc., were employed to analyze the different dynamical regimes. Explicit analytical solution of the model is derived and the results are corroborated with the numerical outcomes.</abstract><pub>ASME</pub><doi>10.1115/1.4042692</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1555-1415 |
ispartof | Journal of computational and nonlinear dynamics, 2019-05, Vol.14 (5) |
issn | 1555-1415 1555-1423 |
language | eng |
recordid | cdi_crossref_primary_10_1115_1_4042692 |
source | ASME_美国机械工程师学会现刊; Alma/SFX Local Collection |
title | Chaotic and Hyperchaotic Dynamics of a Modified Murali–Lakshmanan–Chua Circuit |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T21%3A19%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-asme_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chaotic%20and%20Hyperchaotic%20Dynamics%20of%20a%20Modified%20Murali%E2%80%93Lakshmanan%E2%80%93Chua%20Circuit&rft.jtitle=Journal%20of%20computational%20and%20nonlinear%20dynamics&rft.au=Manimehan,%20I&rft.date=2019-05-01&rft.volume=14&rft.issue=5&rft.issn=1555-1415&rft.eissn=1555-1423&rft_id=info:doi/10.1115/1.4042692&rft_dat=%3Casme_cross%3E367778%3C/asme_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |