Loss Reduction in a 1.5 Stage Axial Turbine by Computer-Driven Stator Hub Contouring

Improvements in stage isentropic efficiency and reductions in total pressure loss are sought in a 1.5 stage axial turbine. This is representative of power generation equipment used in thermal power cycles, which delivers about 80% of the 20 × 1012 kWh world-wide electricity. Component-level improvem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of turbomachinery 2019-06, Vol.141 (6)
Hauptverfasser: Obaida, Hayder M. B, Rona, Aldo, Gostelow, J. Paul
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page
container_title Journal of turbomachinery
container_volume 141
creator Obaida, Hayder M. B
Rona, Aldo
Gostelow, J. Paul
description Improvements in stage isentropic efficiency and reductions in total pressure loss are sought in a 1.5 stage axial turbine. This is representative of power generation equipment used in thermal power cycles, which delivers about 80% of the 20 × 1012 kWh world-wide electricity. Component-level improvements are therefore timely and important toward achieving carbon dioxide global emission targets. Secondary flow loss reduction is sought by applying a nonaxisymmetric endwall design to the turbine stator hub. A guide groove directs the pressure side branch of the horseshoe vortex away from the airfoil suction side, using a parametric endwall hub surface, which is defined as to obtain first-order smooth boundary connections to the remainder of the passage geometry. This delays the onset of the passage vortex and reduces its associated loss. The Automatic Process and Optimization Workbench (apow) generates a Kriging surrogate model from a set of Reynolds-averaged Navier–Stokes simulations, which is used to optimize the hub surface. The three-dimensional steady Reynolds-averaged Navier–Stokes model with an axisymmetric hub is validated against reference experimental measurements from the Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen. Comparative computational fluid dynamics (CFD) predictions with an optimized nonaxisymmetric hub show a decrease in the total pressure loss coefficient and an increase in the isentropic stage efficiency at and off design conditions.
doi_str_mv 10.1115/1.4042305
format Article
fullrecord <record><control><sourceid>asme_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1115_1_4042305</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>368663</sourcerecordid><originalsourceid>FETCH-LOGICAL-a284t-fe1cdd3f17a5d30ea1df54fbac50e8aeec3f3a14bcdf35bc1857e7f802bef6353</originalsourceid><addsrcrecordid>eNotkM9LwzAcxYMoOKcHz15y9dCZb5O02XHMHxMKglbwFpL0m5GxpSNtxf33dmynd3gfHu89Qu6BzQBAPsFMMJFzJi_IBGSuMjVn7JJMmFLzTDLxc01uum7DGHAuxYTUVdt19BObwfWhjTREaijMJP3qzRrp4i-YLa2HZENEag902e72Q48pe07hF-MR69tEV4Mdrdi3QwpxfUuuvNl2eHfWKfl-famXq6z6eHtfLqrM5Er0mUdwTcM9lEY2nKGBxkvhrXGSoTKIjntuQFjXeC6tAyVLLL1iuUVfcMmn5PGU69K4IqHX-xR2Jh00MH28Q4M-3zGyDyfWdDvUm7FoHKtpXqii4Pwf8mdbsA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Loss Reduction in a 1.5 Stage Axial Turbine by Computer-Driven Stator Hub Contouring</title><source>ASME Transactions Journals (Current)</source><source>Alma/SFX Local Collection</source><creator>Obaida, Hayder M. B ; Rona, Aldo ; Gostelow, J. Paul</creator><creatorcontrib>Obaida, Hayder M. B ; Rona, Aldo ; Gostelow, J. Paul</creatorcontrib><description>Improvements in stage isentropic efficiency and reductions in total pressure loss are sought in a 1.5 stage axial turbine. This is representative of power generation equipment used in thermal power cycles, which delivers about 80% of the 20 × 1012 kWh world-wide electricity. Component-level improvements are therefore timely and important toward achieving carbon dioxide global emission targets. Secondary flow loss reduction is sought by applying a nonaxisymmetric endwall design to the turbine stator hub. A guide groove directs the pressure side branch of the horseshoe vortex away from the airfoil suction side, using a parametric endwall hub surface, which is defined as to obtain first-order smooth boundary connections to the remainder of the passage geometry. This delays the onset of the passage vortex and reduces its associated loss. The Automatic Process and Optimization Workbench (apow) generates a Kriging surrogate model from a set of Reynolds-averaged Navier–Stokes simulations, which is used to optimize the hub surface. The three-dimensional steady Reynolds-averaged Navier–Stokes model with an axisymmetric hub is validated against reference experimental measurements from the Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen. Comparative computational fluid dynamics (CFD) predictions with an optimized nonaxisymmetric hub show a decrease in the total pressure loss coefficient and an increase in the isentropic stage efficiency at and off design conditions.</description><identifier>ISSN: 0889-504X</identifier><identifier>EISSN: 1528-8900</identifier><identifier>DOI: 10.1115/1.4042305</identifier><language>eng</language><publisher>ASME</publisher><ispartof>Journal of turbomachinery, 2019-06, Vol.141 (6)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a284t-fe1cdd3f17a5d30ea1df54fbac50e8aeec3f3a14bcdf35bc1857e7f802bef6353</citedby><cites>FETCH-LOGICAL-a284t-fe1cdd3f17a5d30ea1df54fbac50e8aeec3f3a14bcdf35bc1857e7f802bef6353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,38520</link.rule.ids></links><search><creatorcontrib>Obaida, Hayder M. B</creatorcontrib><creatorcontrib>Rona, Aldo</creatorcontrib><creatorcontrib>Gostelow, J. Paul</creatorcontrib><title>Loss Reduction in a 1.5 Stage Axial Turbine by Computer-Driven Stator Hub Contouring</title><title>Journal of turbomachinery</title><addtitle>J. Turbomach</addtitle><description>Improvements in stage isentropic efficiency and reductions in total pressure loss are sought in a 1.5 stage axial turbine. This is representative of power generation equipment used in thermal power cycles, which delivers about 80% of the 20 × 1012 kWh world-wide electricity. Component-level improvements are therefore timely and important toward achieving carbon dioxide global emission targets. Secondary flow loss reduction is sought by applying a nonaxisymmetric endwall design to the turbine stator hub. A guide groove directs the pressure side branch of the horseshoe vortex away from the airfoil suction side, using a parametric endwall hub surface, which is defined as to obtain first-order smooth boundary connections to the remainder of the passage geometry. This delays the onset of the passage vortex and reduces its associated loss. The Automatic Process and Optimization Workbench (apow) generates a Kriging surrogate model from a set of Reynolds-averaged Navier–Stokes simulations, which is used to optimize the hub surface. The three-dimensional steady Reynolds-averaged Navier–Stokes model with an axisymmetric hub is validated against reference experimental measurements from the Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen. Comparative computational fluid dynamics (CFD) predictions with an optimized nonaxisymmetric hub show a decrease in the total pressure loss coefficient and an increase in the isentropic stage efficiency at and off design conditions.</description><issn>0889-504X</issn><issn>1528-8900</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNotkM9LwzAcxYMoOKcHz15y9dCZb5O02XHMHxMKglbwFpL0m5GxpSNtxf33dmynd3gfHu89Qu6BzQBAPsFMMJFzJi_IBGSuMjVn7JJMmFLzTDLxc01uum7DGHAuxYTUVdt19BObwfWhjTREaijMJP3qzRrp4i-YLa2HZENEag902e72Q48pe07hF-MR69tEV4Mdrdi3QwpxfUuuvNl2eHfWKfl-famXq6z6eHtfLqrM5Er0mUdwTcM9lEY2nKGBxkvhrXGSoTKIjntuQFjXeC6tAyVLLL1iuUVfcMmn5PGU69K4IqHX-xR2Jh00MH28Q4M-3zGyDyfWdDvUm7FoHKtpXqii4Pwf8mdbsA</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Obaida, Hayder M. B</creator><creator>Rona, Aldo</creator><creator>Gostelow, J. Paul</creator><general>ASME</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190601</creationdate><title>Loss Reduction in a 1.5 Stage Axial Turbine by Computer-Driven Stator Hub Contouring</title><author>Obaida, Hayder M. B ; Rona, Aldo ; Gostelow, J. Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a284t-fe1cdd3f17a5d30ea1df54fbac50e8aeec3f3a14bcdf35bc1857e7f802bef6353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Obaida, Hayder M. B</creatorcontrib><creatorcontrib>Rona, Aldo</creatorcontrib><creatorcontrib>Gostelow, J. Paul</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of turbomachinery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Obaida, Hayder M. B</au><au>Rona, Aldo</au><au>Gostelow, J. Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Loss Reduction in a 1.5 Stage Axial Turbine by Computer-Driven Stator Hub Contouring</atitle><jtitle>Journal of turbomachinery</jtitle><stitle>J. Turbomach</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>141</volume><issue>6</issue><issn>0889-504X</issn><eissn>1528-8900</eissn><abstract>Improvements in stage isentropic efficiency and reductions in total pressure loss are sought in a 1.5 stage axial turbine. This is representative of power generation equipment used in thermal power cycles, which delivers about 80% of the 20 × 1012 kWh world-wide electricity. Component-level improvements are therefore timely and important toward achieving carbon dioxide global emission targets. Secondary flow loss reduction is sought by applying a nonaxisymmetric endwall design to the turbine stator hub. A guide groove directs the pressure side branch of the horseshoe vortex away from the airfoil suction side, using a parametric endwall hub surface, which is defined as to obtain first-order smooth boundary connections to the remainder of the passage geometry. This delays the onset of the passage vortex and reduces its associated loss. The Automatic Process and Optimization Workbench (apow) generates a Kriging surrogate model from a set of Reynolds-averaged Navier–Stokes simulations, which is used to optimize the hub surface. The three-dimensional steady Reynolds-averaged Navier–Stokes model with an axisymmetric hub is validated against reference experimental measurements from the Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen. Comparative computational fluid dynamics (CFD) predictions with an optimized nonaxisymmetric hub show a decrease in the total pressure loss coefficient and an increase in the isentropic stage efficiency at and off design conditions.</abstract><pub>ASME</pub><doi>10.1115/1.4042305</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0889-504X
ispartof Journal of turbomachinery, 2019-06, Vol.141 (6)
issn 0889-504X
1528-8900
language eng
recordid cdi_crossref_primary_10_1115_1_4042305
source ASME Transactions Journals (Current); Alma/SFX Local Collection
title Loss Reduction in a 1.5 Stage Axial Turbine by Computer-Driven Stator Hub Contouring
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A29%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-asme_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Loss%20Reduction%20in%20a%201.5%20Stage%20Axial%20Turbine%20by%20Computer-Driven%20Stator%20Hub%20Contouring&rft.jtitle=Journal%20of%20turbomachinery&rft.au=Obaida,%20Hayder%20M.%20B&rft.date=2019-06-01&rft.volume=141&rft.issue=6&rft.issn=0889-504X&rft.eissn=1528-8900&rft_id=info:doi/10.1115/1.4042305&rft_dat=%3Casme_cross%3E368663%3C/asme_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true