Prediction of Wheel Slipping Limits for Mobile Robots
In this paper, we present a method to accurately predict the wheel speed limits at which mobile robots can operate without significant slipping. The method is based on an asymptotic solution of the nonlinear equations of motion. Using this approach, we can predict wheel slipping limits of both the i...
Gespeichert in:
Veröffentlicht in: | Journal of dynamic systems, measurement, and control measurement, and control, 2019-04, Vol.141 (4) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we present a method to accurately predict the wheel speed limits at which mobile robots can operate without significant slipping. The method is based on an asymptotic solution of the nonlinear equations of motion. Using this approach, we can predict wheel slipping limits of both the inside and outside wheel when the robot is in a constant circular motion of any radius. The analytical results are supported by experiments, which show that the inside wheel slipping limits for circular motions of various radii occur very close to the predicted values. The method is then applied to predict wheel speed profiles for general motion without slipping and experimentally verified for a sinusoidal path. |
---|---|
ISSN: | 0022-0434 1528-9028 |
DOI: | 10.1115/1.4041664 |