Experimental Analysis of a NACA 0021 Airfoil Section Through 180-Deg Angle of Attack at Low Reynolds Numbers for Use in Wind Turbine Analysis
Wind turbine industry has a special need for accurate post stall airfoil data. While literature often covers incidence ranges [−10 deg, +25 deg], smaller machines experience a range of up to 90 deg for horizontal axis and up to 360 deg for vertical axis wind turbines (VAWTs). The post stall data of...
Gespeichert in:
Veröffentlicht in: | Journal of engineering for gas turbines and power 2019-04, Vol.141 (4) |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Wind turbine industry has a special need for accurate post stall airfoil data. While literature often covers incidence ranges [−10 deg, +25 deg], smaller machines experience a range of up to 90 deg for horizontal axis and up to 360 deg for vertical axis wind turbines (VAWTs). The post stall data of airfoils is crucial to improve the prediction of the start-up behavior as well as the performance at low tip speed ratios. The present paper analyzes and discusses the performance of the symmetrical NACA 0021 airfoil at three Reynolds numbers (Re = 100 k, 140 k, and 180 k) through 180 deg incidence. The typical problem of blockage within a wind tunnel was avoided using an open test section. The experiments were conducted in terms of surface pressure distribution over the airfoil for a tripped and a baseline configuration. The pressure was used to gain lift, pressure drag, moment data. Further investigations with positive and negative pitching revealed a second hysteresis loop in the deep post stall region resulting in a difference of 0.2 in moment coefficient and 0.5 in lift. |
---|---|
ISSN: | 0742-4795 1528-8919 |
DOI: | 10.1115/1.4041651 |