Reliability Analysis Using Second-Order Saddlepoint Approximation and Mixture Distributions
This paper proposes a new second-order saddlepoint approximation (SOSA) method for reliability analysis of nonlinear systems with correlated non-Gaussian and multimodal random variables. The proposed method overcomes the limitation of current available SOSA methods, which are applicable to problems...
Gespeichert in:
Veröffentlicht in: | Journal of mechanical design (1990) 2019-02, Vol.141 (2) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper proposes a new second-order saddlepoint approximation (SOSA) method for reliability analysis of nonlinear systems with correlated non-Gaussian and multimodal random variables. The proposed method overcomes the limitation of current available SOSA methods, which are applicable to problems with only Gaussian random variables, by employing a Gaussian mixture model (GMM). The latter is first constructed using the expectation maximization (EM) method to approximate the joint probability density function (PDF) of the input variables. Expressions of the statistical moments of the response variables are then derived using a second-order Taylor expansion of the limit-state function and the GMM. The standard SOSA method is finally integrated with the GMM to effectively analyze the reliability of systems with correlated non-Gaussian random variables. The accuracy of the proposed method is compared with existing methods including a SOSA based on Nataf transformation. Numerical examples demonstrate the effectiveness of the proposed approach. |
---|---|
ISSN: | 1050-0472 1528-9001 |
DOI: | 10.1115/1.4041370 |