A Spectral Numerical Method for Solving Distributed-Order Fractional Initial Value Problems

In this paper, we construct and analyze a Legendre spectral-collocation method for the numerical solution of distributed-order fractional initial value problems. We first introduce three-term recurrence relations for the fractional integrals of the Legendre polynomial. We then use the properties of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and nonlinear dynamics 2018-10, Vol.13 (10)
Hauptverfasser: Zaky, M. A, Doha, E. H, Tenreiro Machado, J. A
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we construct and analyze a Legendre spectral-collocation method for the numerical solution of distributed-order fractional initial value problems. We first introduce three-term recurrence relations for the fractional integrals of the Legendre polynomial. We then use the properties of the Caputo fractional derivative to reduce the problem into a distributed-order fractional integral equation. We apply the Legendre–Gauss quadrature formula to compute the distributed-order fractional integral and construct the collocation scheme. The convergence of the proposed method is discussed. Numerical results are provided to give insights into the convergence behavior of our method.
ISSN:1555-1415
1555-1423
DOI:10.1115/1.4041030