Free Vibration of Doubly Curved Thin Shells
While several numerical approaches exist for the vibration analysis of thin shells, there is a lack of analytical approaches to address this problem. This is due to complications that arise from coupling between the midsurface and normal coordinates in the transverse differential equation of motion...
Gespeichert in:
Veröffentlicht in: | Journal of vibration and acoustics 2018-06, Vol.140 (3) |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Journal of vibration and acoustics |
container_volume | 140 |
creator | Bryan, April |
description | While several numerical approaches exist for the vibration analysis of thin shells, there is a lack of analytical approaches to address this problem. This is due to complications that arise from coupling between the midsurface and normal coordinates in the transverse differential equation of motion (TDEM) of the shell. In this research, an Uncoupling Theorem for solving the TDEM of doubly curved, thin shells with equivalent radii is introduced. The use of the uncoupling theorem leads to the development of an uncoupled transverse differential of motion for the shells under consideration. Solution of the uncoupled spatial equation results in a general expression for the eigenfrequencies of these shells. The theorem is applied to four shell geometries, and numerical examples are used to demonstrate the influence of material and geometric parameters on the eigenfrequencies of these shells. |
doi_str_mv | 10.1115/1.4038578 |
format | Article |
fullrecord | <record><control><sourceid>asme_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1115_1_4038578</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>392547</sourcerecordid><originalsourceid>FETCH-LOGICAL-a249t-11f74ce58b5fe93dadb54a8cbe71fd248479888e62a375bd3fdf65e75a824fba3</originalsourceid><addsrcrecordid>eNotj01LAzEURYMoWKsL126yFZmal48mWcpoVSi4sLoNyeSFTpl2JOkI_feOtKt7F4fLPYTcApsBgHqEmWTCKG3OyAQUN5WxXJ-PnUlTWcb4JbkqZcMYCKHUhDwsMiL9bkP2-7bf0T7R534I3YHWQ_7FSFfrdkc_19h15ZpcJN8VvDnllHwtXlb1W7X8eH2vn5aV59LuK4CkZYPKBJXQiuhjUNKbJqCGFLk0UltjDM65F1qFKFJMc4VaecNlCl5Myf1xt8l9KRmT-8nt1ueDA-b-LR24k-XI3h1ZX7boNv2Qd-M1JyxXUos_OiJMUA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Free Vibration of Doubly Curved Thin Shells</title><source>ASME Transactions Journals (Current)</source><source>Alma/SFX Local Collection</source><creator>Bryan, April</creator><creatorcontrib>Bryan, April</creatorcontrib><description>While several numerical approaches exist for the vibration analysis of thin shells, there is a lack of analytical approaches to address this problem. This is due to complications that arise from coupling between the midsurface and normal coordinates in the transverse differential equation of motion (TDEM) of the shell. In this research, an Uncoupling Theorem for solving the TDEM of doubly curved, thin shells with equivalent radii is introduced. The use of the uncoupling theorem leads to the development of an uncoupled transverse differential of motion for the shells under consideration. Solution of the uncoupled spatial equation results in a general expression for the eigenfrequencies of these shells. The theorem is applied to four shell geometries, and numerical examples are used to demonstrate the influence of material and geometric parameters on the eigenfrequencies of these shells.</description><identifier>ISSN: 1048-9002</identifier><identifier>EISSN: 1528-8927</identifier><identifier>DOI: 10.1115/1.4038578</identifier><language>eng</language><publisher>ASME</publisher><ispartof>Journal of vibration and acoustics, 2018-06, Vol.140 (3)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a249t-11f74ce58b5fe93dadb54a8cbe71fd248479888e62a375bd3fdf65e75a824fba3</citedby><cites>FETCH-LOGICAL-a249t-11f74ce58b5fe93dadb54a8cbe71fd248479888e62a375bd3fdf65e75a824fba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904,38499</link.rule.ids></links><search><creatorcontrib>Bryan, April</creatorcontrib><title>Free Vibration of Doubly Curved Thin Shells</title><title>Journal of vibration and acoustics</title><addtitle>J. Vib. Acoust</addtitle><description>While several numerical approaches exist for the vibration analysis of thin shells, there is a lack of analytical approaches to address this problem. This is due to complications that arise from coupling between the midsurface and normal coordinates in the transverse differential equation of motion (TDEM) of the shell. In this research, an Uncoupling Theorem for solving the TDEM of doubly curved, thin shells with equivalent radii is introduced. The use of the uncoupling theorem leads to the development of an uncoupled transverse differential of motion for the shells under consideration. Solution of the uncoupled spatial equation results in a general expression for the eigenfrequencies of these shells. The theorem is applied to four shell geometries, and numerical examples are used to demonstrate the influence of material and geometric parameters on the eigenfrequencies of these shells.</description><issn>1048-9002</issn><issn>1528-8927</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNotj01LAzEURYMoWKsL126yFZmal48mWcpoVSi4sLoNyeSFTpl2JOkI_feOtKt7F4fLPYTcApsBgHqEmWTCKG3OyAQUN5WxXJ-PnUlTWcb4JbkqZcMYCKHUhDwsMiL9bkP2-7bf0T7R534I3YHWQ_7FSFfrdkc_19h15ZpcJN8VvDnllHwtXlb1W7X8eH2vn5aV59LuK4CkZYPKBJXQiuhjUNKbJqCGFLk0UltjDM65F1qFKFJMc4VaecNlCl5Myf1xt8l9KRmT-8nt1ueDA-b-LR24k-XI3h1ZX7boNv2Qd-M1JyxXUos_OiJMUA</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Bryan, April</creator><general>ASME</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180601</creationdate><title>Free Vibration of Doubly Curved Thin Shells</title><author>Bryan, April</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a249t-11f74ce58b5fe93dadb54a8cbe71fd248479888e62a375bd3fdf65e75a824fba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bryan, April</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of vibration and acoustics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bryan, April</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Free Vibration of Doubly Curved Thin Shells</atitle><jtitle>Journal of vibration and acoustics</jtitle><stitle>J. Vib. Acoust</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>140</volume><issue>3</issue><issn>1048-9002</issn><eissn>1528-8927</eissn><abstract>While several numerical approaches exist for the vibration analysis of thin shells, there is a lack of analytical approaches to address this problem. This is due to complications that arise from coupling between the midsurface and normal coordinates in the transverse differential equation of motion (TDEM) of the shell. In this research, an Uncoupling Theorem for solving the TDEM of doubly curved, thin shells with equivalent radii is introduced. The use of the uncoupling theorem leads to the development of an uncoupled transverse differential of motion for the shells under consideration. Solution of the uncoupled spatial equation results in a general expression for the eigenfrequencies of these shells. The theorem is applied to four shell geometries, and numerical examples are used to demonstrate the influence of material and geometric parameters on the eigenfrequencies of these shells.</abstract><pub>ASME</pub><doi>10.1115/1.4038578</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1048-9002 |
ispartof | Journal of vibration and acoustics, 2018-06, Vol.140 (3) |
issn | 1048-9002 1528-8927 |
language | eng |
recordid | cdi_crossref_primary_10_1115_1_4038578 |
source | ASME Transactions Journals (Current); Alma/SFX Local Collection |
title | Free Vibration of Doubly Curved Thin Shells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T07%3A00%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-asme_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Free%20Vibration%20of%20Doubly%20Curved%20Thin%20Shells&rft.jtitle=Journal%20of%20vibration%20and%20acoustics&rft.au=Bryan,%20April&rft.date=2018-06-01&rft.volume=140&rft.issue=3&rft.issn=1048-9002&rft.eissn=1528-8927&rft_id=info:doi/10.1115/1.4038578&rft_dat=%3Casme_cross%3E392547%3C/asme_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |