Free Vibration of Doubly Curved Thin Shells

While several numerical approaches exist for the vibration analysis of thin shells, there is a lack of analytical approaches to address this problem. This is due to complications that arise from coupling between the midsurface and normal coordinates in the transverse differential equation of motion...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of vibration and acoustics 2018-06, Vol.140 (3)
1. Verfasser: Bryan, April
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Journal of vibration and acoustics
container_volume 140
creator Bryan, April
description While several numerical approaches exist for the vibration analysis of thin shells, there is a lack of analytical approaches to address this problem. This is due to complications that arise from coupling between the midsurface and normal coordinates in the transverse differential equation of motion (TDEM) of the shell. In this research, an Uncoupling Theorem for solving the TDEM of doubly curved, thin shells with equivalent radii is introduced. The use of the uncoupling theorem leads to the development of an uncoupled transverse differential of motion for the shells under consideration. Solution of the uncoupled spatial equation results in a general expression for the eigenfrequencies of these shells. The theorem is applied to four shell geometries, and numerical examples are used to demonstrate the influence of material and geometric parameters on the eigenfrequencies of these shells.
doi_str_mv 10.1115/1.4038578
format Article
fullrecord <record><control><sourceid>asme_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1115_1_4038578</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>392547</sourcerecordid><originalsourceid>FETCH-LOGICAL-a249t-11f74ce58b5fe93dadb54a8cbe71fd248479888e62a375bd3fdf65e75a824fba3</originalsourceid><addsrcrecordid>eNotj01LAzEURYMoWKsL126yFZmal48mWcpoVSi4sLoNyeSFTpl2JOkI_feOtKt7F4fLPYTcApsBgHqEmWTCKG3OyAQUN5WxXJ-PnUlTWcb4JbkqZcMYCKHUhDwsMiL9bkP2-7bf0T7R534I3YHWQ_7FSFfrdkc_19h15ZpcJN8VvDnllHwtXlb1W7X8eH2vn5aV59LuK4CkZYPKBJXQiuhjUNKbJqCGFLk0UltjDM65F1qFKFJMc4VaecNlCl5Myf1xt8l9KRmT-8nt1ueDA-b-LR24k-XI3h1ZX7boNv2Qd-M1JyxXUos_OiJMUA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Free Vibration of Doubly Curved Thin Shells</title><source>ASME Transactions Journals (Current)</source><source>Alma/SFX Local Collection</source><creator>Bryan, April</creator><creatorcontrib>Bryan, April</creatorcontrib><description>While several numerical approaches exist for the vibration analysis of thin shells, there is a lack of analytical approaches to address this problem. This is due to complications that arise from coupling between the midsurface and normal coordinates in the transverse differential equation of motion (TDEM) of the shell. In this research, an Uncoupling Theorem for solving the TDEM of doubly curved, thin shells with equivalent radii is introduced. The use of the uncoupling theorem leads to the development of an uncoupled transverse differential of motion for the shells under consideration. Solution of the uncoupled spatial equation results in a general expression for the eigenfrequencies of these shells. The theorem is applied to four shell geometries, and numerical examples are used to demonstrate the influence of material and geometric parameters on the eigenfrequencies of these shells.</description><identifier>ISSN: 1048-9002</identifier><identifier>EISSN: 1528-8927</identifier><identifier>DOI: 10.1115/1.4038578</identifier><language>eng</language><publisher>ASME</publisher><ispartof>Journal of vibration and acoustics, 2018-06, Vol.140 (3)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a249t-11f74ce58b5fe93dadb54a8cbe71fd248479888e62a375bd3fdf65e75a824fba3</citedby><cites>FETCH-LOGICAL-a249t-11f74ce58b5fe93dadb54a8cbe71fd248479888e62a375bd3fdf65e75a824fba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904,38499</link.rule.ids></links><search><creatorcontrib>Bryan, April</creatorcontrib><title>Free Vibration of Doubly Curved Thin Shells</title><title>Journal of vibration and acoustics</title><addtitle>J. Vib. Acoust</addtitle><description>While several numerical approaches exist for the vibration analysis of thin shells, there is a lack of analytical approaches to address this problem. This is due to complications that arise from coupling between the midsurface and normal coordinates in the transverse differential equation of motion (TDEM) of the shell. In this research, an Uncoupling Theorem for solving the TDEM of doubly curved, thin shells with equivalent radii is introduced. The use of the uncoupling theorem leads to the development of an uncoupled transverse differential of motion for the shells under consideration. Solution of the uncoupled spatial equation results in a general expression for the eigenfrequencies of these shells. The theorem is applied to four shell geometries, and numerical examples are used to demonstrate the influence of material and geometric parameters on the eigenfrequencies of these shells.</description><issn>1048-9002</issn><issn>1528-8927</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNotj01LAzEURYMoWKsL126yFZmal48mWcpoVSi4sLoNyeSFTpl2JOkI_feOtKt7F4fLPYTcApsBgHqEmWTCKG3OyAQUN5WxXJ-PnUlTWcb4JbkqZcMYCKHUhDwsMiL9bkP2-7bf0T7R534I3YHWQ_7FSFfrdkc_19h15ZpcJN8VvDnllHwtXlb1W7X8eH2vn5aV59LuK4CkZYPKBJXQiuhjUNKbJqCGFLk0UltjDM65F1qFKFJMc4VaecNlCl5Myf1xt8l9KRmT-8nt1ueDA-b-LR24k-XI3h1ZX7boNv2Qd-M1JyxXUos_OiJMUA</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Bryan, April</creator><general>ASME</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180601</creationdate><title>Free Vibration of Doubly Curved Thin Shells</title><author>Bryan, April</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a249t-11f74ce58b5fe93dadb54a8cbe71fd248479888e62a375bd3fdf65e75a824fba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bryan, April</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of vibration and acoustics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bryan, April</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Free Vibration of Doubly Curved Thin Shells</atitle><jtitle>Journal of vibration and acoustics</jtitle><stitle>J. Vib. Acoust</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>140</volume><issue>3</issue><issn>1048-9002</issn><eissn>1528-8927</eissn><abstract>While several numerical approaches exist for the vibration analysis of thin shells, there is a lack of analytical approaches to address this problem. This is due to complications that arise from coupling between the midsurface and normal coordinates in the transverse differential equation of motion (TDEM) of the shell. In this research, an Uncoupling Theorem for solving the TDEM of doubly curved, thin shells with equivalent radii is introduced. The use of the uncoupling theorem leads to the development of an uncoupled transverse differential of motion for the shells under consideration. Solution of the uncoupled spatial equation results in a general expression for the eigenfrequencies of these shells. The theorem is applied to four shell geometries, and numerical examples are used to demonstrate the influence of material and geometric parameters on the eigenfrequencies of these shells.</abstract><pub>ASME</pub><doi>10.1115/1.4038578</doi></addata></record>
fulltext fulltext
identifier ISSN: 1048-9002
ispartof Journal of vibration and acoustics, 2018-06, Vol.140 (3)
issn 1048-9002
1528-8927
language eng
recordid cdi_crossref_primary_10_1115_1_4038578
source ASME Transactions Journals (Current); Alma/SFX Local Collection
title Free Vibration of Doubly Curved Thin Shells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T07%3A00%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-asme_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Free%20Vibration%20of%20Doubly%20Curved%20Thin%20Shells&rft.jtitle=Journal%20of%20vibration%20and%20acoustics&rft.au=Bryan,%20April&rft.date=2018-06-01&rft.volume=140&rft.issue=3&rft.issn=1048-9002&rft.eissn=1528-8927&rft_id=info:doi/10.1115/1.4038578&rft_dat=%3Casme_cross%3E392547%3C/asme_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true